首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Herein, the trackable supramolecular transformation of a two‐component molecular cage to a three‐component cage through supramolecular fusion with another two‐component molecular square is described. The use of tetraphenylethene (TPE), a chromophore with aggregation‐induced emission (AIE) character, as a component for the molecular cages enables facile fluorescence monitoring of the transformation process: while both cages exhibit fluorescence emission via the restriction of intramolecular motion of the TPE motif, the interactions between TPE and 4,4′‐bipyridine introduced in the supramolecular fusion process result in partial fluorescence quenching and shifts in the emission maximum. This study provides a simple and efficient approach towards complex supramolecular cages with emergent functions and demonstrates that AIE features could provide unique opportunities for the characterization of complex, dynamic supramolecular transformation processes.  相似文献   

2.
Aggregation‐induced emission (AIE) has been harnessed in many systems through the principle of restriction of intramolecular rotations (RIR) based on mechanistic understanding from archetypal AIE molecules such as tetraphenylethene (TPE). However, as the family of AIE‐active molecules grows, the RIR model cannot fully explain some AIE phenomena. Here, we report a broadening of the AIE mechanism through analysis of 10,10′,11,11′‐tetrahydro‐5,5′‐bidibenzo[a,d][7]annulenylidene (THBDBA), and 5,5′‐bidibenzo[a,d][7]annulenylidene (BDBA). Analyses of the computational QM/MM model reveal that the novel mechanism behind the AIE of THBDBA and BDBA is the restriction of intramolecular vibration (RIV). A more generalized mechanistic understanding of AIE results by combining RIR and RIV into the principle of restriction of intramolecular motions (RIM).  相似文献   

3.
Highly emissive inorganic–organic nanoparticles with core–shell structures are fabricated by a one‐pot, surfactant‐free hybridization process. The surfactant‐free sol–gel reactions of tetraphenylethene‐ (TPE) and silole‐functionalized siloxanes followed by reactions with tetraethoxysilane afford fluorescent silica nanoparticles FSNP‐ 1 and FSNP‐ 2 , respectively. The FSNPs are uniformly sized, surface‐charged and colloidally stable. The diameters of the FSNPs are tunable in the range of 45–295 nm by changing the reaction conditions. Whereas their TPE and silole precursors are non‐emissive, the FSNPs strongly emit in the visible vision, as a result of the novel aggregation‐induced emission (AIE) characteristics of the TPE and silole aggregates in the hybrid nanoparticles. The FSNPs pose no toxicity to living cells and can be utilized to selectively image cytoplasm of HeLa cells.  相似文献   

4.
ABSTRACT

Tetraphenylethylene (TPE) related (supra)molecules have been intensively investigated due to their aggregation-induced emission (AIE) effect based on the restriction of intramolecular rotation (RIR). Meanwhile, boron-dipyrromethene (BODIPY) tends to emit intense fluorescence with high quantum yields. Herein, we combined TPE, BODIPY and terpyridine (TPY) into one system to study the emissive behaviour of organic building block as well as a self-assembled metallo-supramolecule. The TPY and BODIPY substituents with bulky sizes provide strong hindrance to restrict the rotation of the phenyl groups on TPE, leading to enhancement of emissive properties in both solution and aggregation states. Furthermore, the BODIPY-TPE-TPY ligand (L) was assembled with Zn (II) through coordination-driven self-assembly to form a cyclic dimer (D) with typical AIE characteristics.  相似文献   

5.
We report an effective modulation of the quantum transport in molecular junctions consisting of aggregation‐induced‐emission(AIE)‐active molecules. Theoretical simulations based on combined density functional theory and rate‐equation method calculations show that the low‐bias conductance of the junction with a single tetraphenylethylene (TPE) molecule can be completely suppressed by strong electron–vibration couplings, that is, the Franck‐Condon blockade effect. It is mainly associated with the low‐energy vibration modes, which is also the origin of the fluorescence quenching of the AIE molecule in solution. We further found that the conductance of the junction can be lifted by restraining the internal motion of the TPE molecule by either methyl substitution on the phenyl group or by aggregation, a mechanism similar to the AIE process. The present work demonstrates the correlation between optical processes of molecules and quantum transport in their junction, and thus opens up a new avenue for the application of AIE‐type molecules in molecular electronics and functional devices.  相似文献   

6.
Aggregation-induced emission (AIE)-active nanoparticles (NPs) exhibiting multicolor fluorescence and high-quantum yields independent of the environment are important for the further development of next-generation smart fluorescent materials. In this work, AIE-active amphiphilic block copolymers were designed and synthesized by RAFT polymerization of a brominated tetraphenylethene (TPE)-containing acrylate (A-TPE-Br). The block copolymer exhibited typical AIE effects in selective solvents, which can be explained by hydrophobic TPE aggregated in the core during micelle formation. Luminescent core–shell NPs with a crosslinked AIE core (fixed structure) were synthesized by the Suzuki coupling reaction of the bromine groups of the assembled block copolymer and boronic acid compounds. The NPs composed of TPE/thiophene crosslinked core showed green emission in both diluted state and solid state, implying the ability to fluoresce regardless of environmental changes and molecular dispersion. Multicolor luminescent NPs capable of changing color from blue to red were synthesized by changing the coupling compounds, such as anthracene for electron-rich units and benzothiadiazole for electron-deficient units. The effects of the nature of the donor and acceptor, as well as their combination (TPE/donor/acceptor sequence), on the color and fluorescent intensity of the core crosslinked NPs in the nonpolar and polar solvents, and solid state, were investigated.  相似文献   

7.
A quadrangular prismatic tricyclooxacalixarene cage 1 based on tetraphenylethylene (TPE) was efficiently synthesized by a one‐pot SNAr condensation reaction. As a result of the porous internal structure in the solid state, cage 1 exhibited a good CO2 uptake capacity of 12.5 wt % and a high selectivity for CO2 over N2 adsorption of 80 (273 K, 1 bar) with a BET surface area of 432 m2 g?1. Formation of cage 1 led to the fluorescence of TPE being switched on in solution. The system was employed as a single‐molecule platform to study the mechanism of aggregation‐induced emission (AIE) by examining the restriction of intramolecular rotation (RIR).  相似文献   

8.
A series of aggregation‐induced emission (AIE) fluorescent gelators (TPE‐Cn‐Chol) were synthesized by attaching tetraphenylethylene (TPE) to cholesterol through an alkyl chain. The properties of the gel, nano‐/microaggregate, and condensed phases were studied carefully. TPE‐Cn‐Chol molecules form AIE fluorescent gels in acetone and in DMF. Their fluorescence can be reversibly switched between the “on” and “off” states by a gel–sol phase transition upon thermal treatment. The AIE properties of aggregated nano‐/microstructures in acetone/water mixtures with different water fractions were studied by using fluorescence spectrometry and scanning electron microscopy (SEM). In different acetone/water mixtures, the TPE‐Cn‐Chol molecules formed different nano‐/microaggregates, such as rodlike crystallites and spherical nanoparticles that showed different fluorescence colors. Finally, the condensed phase behavior of TPE‐Cn‐Chol was studied by using polarizing microscopy (POM), differential scanning calorimetry (DSC), fluorescence spectrometry, fluorescence optical microscopy, and wide‐angle X ray scattering (WAXS). The clover‐shaped TPE unit introduced into the rodlike cholesterol mesogen inhibits not only the formation of a liquid‐crystal phase but also recrystallization upon cooling from the isotropic liquid phase. Very interestingly, TPE‐Cn‐Chol molecules in the condensed state change their fluorescence color under external stimuli, such as melting, grinding, and solvent fuming. The phase transition is the origin of these thermo‐, mechano‐, and vapochromic properties. These findings offer a simple and interesting platform for the creation of multistimuli‐responsive fluorescent sensors.  相似文献   

9.
In this work, two rigid, multiple tetraphenylethene (TPE)‐substituted, π‐conjugated, snowflake‐shaped luminophores BT and BPT were facilely synthesized by using a 6‐fold Suzuki coupling reaction. These molecules are constructed based on the nonplanar structure of propeller‐shaped hexaphenylbenzene (HPB) or benzene as core groups and TPE as end groups. As a result, they reserve the intrinsic aggregation‐induced emission (AIE) property of the TPE moiety. Meanwhile, both fluorescence quantum yield and piezochromic behavior in the solid state can be tuned or switched by inserting the phenyl bridges through changing the twisting conformation. The more extended structure BPT showed a much stronger AIE effect and higher ΦF,f in the solid state in comparison with that of BT. Furthermore, an excellent optical waveguide application of these molecules was achieved. However, the revisable piezofluorochromic behavior has only appeared when BT was ground using a pestle and treated with solvent.  相似文献   

10.
Intracellular viscosity is a crucial parameter that indicates the functioning of cells. In this work, we demonstrate the utility of TPE‐Cy, a cell‐permeable dye with aggregation‐induced emission (AIE) property, in mapping the viscosity inside live cells. Owing to the AIE characteristics, both the fluorescence intensity and lifetime of this dye are increased along with an increase in viscosity. Fluorescence lifetime imaging of live cells stained with TPE‐Cy reveals that the lifetime in lipid droplets is much shorter than that from the general cytoplasmic region. The loose packing of the lipids in a lipid droplet results in low viscosity and thus shorter lifetime of TPE‐Cy in this region. It demonstrates that the AIE dye could provide good resolution in intracellular viscosity sensing. This is also the first work in which AIE molecules are applied in fluorescence lifetime imaging and intracellular viscosity sensing.  相似文献   

11.
Aggregation‐induced emission combined with aggregation‐promoted photo‐oxidation has been reported only in two works quite recently. In fact, this phenomenon is not commonly observed for AIE‐active molecules. In this work, a new tetraphenylethylene derivative (TPE‐4T) with aggregation‐induced emission (AIE) and aggregation‐promoted photo‐oxidation was synthesized and investigated. The pristine TPE‐4T film exhibits strong bluish‐green emission, which turns to quite weak yellow emission after UV irradiation. Interestingly, after solvent treatment, the weakly fluorescent intermediate will become bright‐yellow emitting. Moreover, the morphology of the TPE‐4T film could be regulated by UV irradiation. The wettability of the TPE‐4T microcrystalline surface is drastically changed from hydrophobic to hydrophilic. This work contributes a new member to the aggregation induced photo‐oxidation family and enriches the photo‐oxidation study of tetraphenylethylene derivatives.  相似文献   

12.
A handy, specific, sensitive bioprobe has been developed. Tetraphenylethene (TPE) was functionalized by a maleimide (MI) group, giving a TPE‐MI adduct that was nonemissive in both solution and the solid state. It was readily transformed into a fluorogen showing an aggregation‐induced emission (AIE) property by the click addition of thiol to its MI pendant. The click reaction and the AIE effect enabled TPE‐MI to function as a thiol‐specific bioprobe in the solid state. Thus, the spot of TPE‐MI on a TLC plate became emissive when it had been exposed to L ‐cysteine, an amino acid containing a thiol group, but remained nonemissive when exposed to other amino acids that lack free thiol units. The thiol‐activated emission was rapid and strong, readily detected by the naked eye at an analyte concentration as low as approximately 1 ppb, thanks to the “lighting up” nature of the bioprobing process. Similarly, the emission of TPE‐MI was turned on only by the proteins containing free thiol units, such as glutathione. Clear fluorescence images were taken when living cells were stained by using TPE‐MI as a visualization agent, affording a facile fluorescent maker for mapping the distribution of thiol species in cellular systems.  相似文献   

13.
Zhu C  Pang S  Xu J  Jia L  Xu F  Mei J  Qin A  Sun J  Ji J  Tang B 《The Analyst》2011,136(16):3343-3348
The aggregation-induced emission (AIE) of a 1,2-diphenyl-1,2-di(p-tolyl)ethene (TPE) was explored as a novel fluorescence method for probing the assembling/disassembling of amphiphilic molecules. The fluorescence intensity was able to monitor the formation of micelles and determine the critical micelle concentration (CMC) of surfactants. The temperature-dependent micellization of the pharmaceutically important PEO-PPO-PEO copolymer, Pluronic F127, was further studied by using the TPE fluorescence spectrum intensity. Our results showed good agreement with those reported in the literature by using other methods. The special advantage of the AIE probe method was further explored to determine the assembling/disassembling process of the colored amphiphilic molecule, 1-[4-(3-phenylazophenoxy)butyl]triethylamine bromide (AzoC4), whose CMC value has not previously been described. Since the TPE fluorescence signal mainly comes from the aqueous phase, not from the inside of hydrophobic core, it provides a possible platform to study the CMC of those colored surfactants. Based on the novel fluorescence properties of TPE in the aggregated and dispersed states, one can conclude that the TPE method is a promising method for the determination of the CMC and critical micellization temperature (CMT), particularly having a special advantage to determine the assembling/disassembling process of colored amphiphilic molecules.  相似文献   

14.
The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor–acceptor system. In this respect, a series of donor–acceptor architectures of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor–acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation‐induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo‐Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non‐emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy‐transfer processes, namely, FRET and DRET, in one polarity‐sensitive donor–acceptor pair system. The accuracy of the dark‐emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena.  相似文献   

15.
A tetraphenylethylene (TPE) derivative bearing two dimethylformamidine units was synthesized. The dihydrogen chloride salt of this TPE derivative was soluble in water and showed almost no emission. By addition of phosphate anions, the dihydrogen chloride salt could be transformed into the monohydrogen chloride salt, which was barely soluble and emitted strong fluorescence through aggregation‐induced emission (AIE), while many other anions could not bring about a fluorescence enhancement. Meanwhile, the dihydrogen chloride salt and monohydrogen chloride salt could be reversible transformed by addition of acid and base alternately in the presence of phosphate anion, which led to fluorescence turn‐on and turn‐off. Therefore, the TPE dimethylformamidine holds potential for selectively sensing phosphate anions in water and use as fluorescence pH switch. This study provided a new approach to AIEgen sensors by using formamidine groups.  相似文献   

16.
A novel fluorescent sensor based on tetraphenylethene (TPE) modified with 2,6‐pyridinedicarboxylic acid (PDA) that shows aggregation‐induced emission (AIE) characteristics for thorium recognition with remarkable fluoresence enhancement response has been synthesized. This sensor is capable of visually distinguishing Th4+ among lanthanides, transition metals, and alkali metals under UV light. Th4+ can be detected by the naked eye at ppb levels owing to the AIE phenomenon. The sensor showed high selectivity for Th4+ compared to all other metals tested, and this recognition displayed good anti‐interference qualities. This study represents the first application of a AIE fluorescence sensor in actinide metal recognition and it has potential applications in environmental systems for thorium ion detection.  相似文献   

17.
Redox‐responsive micelles are versatile nanoplatforms for on‐demand drug delivery, but the in situ evaluation of drug release is challenging. Fluorescence resonance energy transfer (FRET) technique shows potential for addressing this, while the aggregation‐caused quenching effect limits the assay sensitivity. The aim of the current work is to combine aggregation‐induced emission (AIE) probe with FRET to realize drug release assessment from micelles. Tetraphenylethene (TPE) is selected as AIE dye and curcumin (Cur) is chosen as the model drug as well as FRET receptor. The drug is covalently linked to a block copolymer via the disulfide bond linker and TPE is also chemically linked to the polymer via an amide bond; the obtained amphiphilic polymer conjugate self‐assembles into micelles with a hydrodynamic size of ≈125 nm. Upon the supplement of glutathione or tris(2‐carboxyethyl)phosphine) trigger (10 × 10−3m ), the drug release induces the fluorescence increase of both TPE and Cur. Accompanied with the FRET decay, absorption enhancement and particle size increase are observed. The same phenomenon is observed in MCF‐7 cells. The FRET–AIE approach can be a useful addition to the spectrum of available methods for monitoring drug release from stimuli‐responsive nanomedicine.  相似文献   

18.
Unprecedented dual aggregation‐induced emission (AIE) behavior based on a steric‐hindrance photochromic system is presented, with incorporation one or two bulky aryl groups, resulting in different flexibleness. The dual AIE behavior of open and closed isomers can be explained by restriction of intramolecular rotation (RIR), restriction of intramolecular vibration (RIV), and intermolecular stacking. The large bulky benzothiophene causes restricted rotation, enhancing the emission of open form in solution and weak π–π molecular packing, thereby efficiently enhancing the luminescence performance in the solid state. With incorporation of two large bulky benzothiophene groups, BBTE possesses the most outstanding AIE activity, undergoing highly efficient and reversible off‐to‐on fluorescence in film upon alternating UV and visible light irradiation along with excellent fatigue resistance. The off‐to‐on fluorescent photoswitch is successfully established in super resolution imaging.  相似文献   

19.
Whereas most conventional DNA probes are flat disklike aromatic molecules, we explored the possibility of developing quadruplex sensors with nonplanar conformations, in particular, the propeller‐shaped tetraphenylethene (TPE) salts with aggregation‐induced emission (AIE) characteristics. 1,1,2,2‐Tetrakis[4‐(2‐triethylammonioethoxy)phenyl]ethene tetrabromide (TPE‐ 1 ) was found to show a specific affinity to a particular quadruplex structure formed by a human telomeric DNA strand in the presence of K+ ions, as indicated by the enhanced and bathochromically shifted emission of the AIE fluorogen. Steady‐state and time‐resolved spectral analyses revealed that the specific binding stems from a structural matching between the AIE fluorogen and the DNA strand in the folding process. Computational modeling suggests that the AIE molecule docks on the grooves of the quadruplex surface with the aid of electrostatic attraction. The binding preference of TPE‐ 1 enables it to serve as a bioprobe for direct monitoring of cation‐driven conformational transitions between the quadruplexes of various conformations, a job unachievable by the traditional G‐quadruplex biosensors. Methyl thiazolyl tetrazolium (MTT) assays reveal that TPE‐ 1 is cytocompatible, posing no toxicity to living cells.  相似文献   

20.
A tetrakis(bisurea)‐decorated tetraphenylethene (TPE) ligand ( L2 ) was designed, which, upon coordination with phosphate ions, displays fluorescence “turn‐on” over a wide concentration range, from dilute to concentrated solutions and to the solid state. The fluorescence enhancement can be attributed to the restriction of the intramolecular rotation of TPE by anion coordination. The crystal structure of the A4L2 (A=anion) complex of L2 with monohydrogen phosphate provides direct evidence for the coordination mode of the anion. This “anion‐coordination‐induced emission” (ACIE) is another approach for fluorescence turn‐on in addition to aggregation‐induced emission (AIE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号