首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The characteristics of an IMA3-150É sealed-off vacuum diode connected to a RADAN-220 nanosecond pulser are investigated. It is found that the electron beam behind the foil contains electrons with an energy exceeding the voltage applied to the diode. It is shown that the elevated-energy electrons appear at the leading edge of a current pulse, the FWHM of the current pulse of these electrons is 200–450 ps, and the pulse amplitude reaches several tens of amperes.  相似文献   

2.
Subnanosecond electron beams with the record current amplitude (~70 A in air and ~200 A in helium) were produced at atmospheric pressure. The optimal generator open-circuit voltage was found for which the electron-beam current amplitude produced in a gas diode was maximal behind a foil. It was established that the electron beam was produced at the stage when the cathode plasma closely approaches the anode. It was shown that a high-current beam can be produced at high pressures because of the presence of the upper branches in the curves characterizing the electron-escape (runaway) criterion and the discharge-ignition criterion (Paschen curve).  相似文献   

3.
The spectra of electrons and X-ray photons generated in nanosecond discharges in air under atmospheric pressure are investigated theoretically and experimentally. Data for the discharge formation dynamics in a nonuniform electric field are gathered. It is confirmed that voltage pulses with an amplitude of more than 100 kV and a rise time of 1 ns or less causing breakdown of an electrode gap with a small-radius cathode generate runaway electrons, which can be divided into three groups in energy (their energy varies from several kiloelectronvolts to several hundreds of kiloelectronvolts). It is also borne out that the formation of the space charge is due to electrons appearing in the gap at the cathode and a major contribution to the electron beam behind the foil comes from electrons of the second group, the maximal energy of which roughly corresponds to the voltage across the gap during electron beam generation. X-ray radiation from the gas-filled diode results from beam electron slowdown both in the anode and in the gap. It is shown that the amount of group-3 electrons with an energy above the energy gained by runaway electrons (in the absence of losses) at a maximal voltage across the gap is much smaller than the amount of group-2 electrons.  相似文献   

4.
Subnanosecond electron beams formed in diodes filled in with a gas at atmospheric pressure and X-rays emitted from nanosecond-discharge plasmas are studied. Both phenomena hold promise for lasing technology. A three-group separation of fast electrons in a gas-filled diode is proposed. It is found that the duration of the beam current in a diode filled with air at atmospheric pressure does not exceed 0.1 ns. It is also shown that the amplitude of the beam current attains maximum with a certain delay after the application of voltage to the discharge gap. A current of ~400 A is detected behind the foil of a diode filled with air at atmospheric pressure. At a subnanosecond duration of the voltage pulse and the diffuse discharge, X-ray radiation is observed from the brightly glowing area of corona discharge. The mean steady-state velocities and energies of fast electrons in nitrogen are calculated. Head-on collisions are shown to control the constancy of the mean velocity of fast electrons for the field strengths E/p < 170 kV/(cm atm). At E/p > 170 kV/(cm atm), the escape of fast electrons takes place. It is particularly the head-on collisions that are decided to be responsible for the emission of X-rays from the bulk.  相似文献   

5.
The parameters of an electron beam generated in helium in the pressure range p = 10−4−12 atm are studied. Nanosecond high-voltage pulses are applied to a gap between a tubular cathode and planar anode, which is made of 45-μm-thick AlBe foil. Behind the anode, an electron beam is detected at a helium pressure of 12 atm. The pressure dependence of the beam current amplitude shows three peaks at p ≈ 0.01, ≈ 0.07, and ≈ 3 atm. The beam-induced glow of a luminescent film placed behind the foil and the discharge glow at different helium pressures in the gas-filled diode are photographed.  相似文献   

6.
Nanosecond space discharge in a gas-filled diode is promising for pumping of lasers and high-power lamps. The space charge formed in the absence of an additional preionization source has a few advantages. The energy distributions of the beam electrons and the X-ray spectrum are determined. It is demonstrated that several high-energy electron bunches are formed in such a discharge. The main contribution to the beam current measured behind the foil is related to the runaway electrons, which have energies of tens or hundreds of kiloelectronvolts (supershort avalanche electron beam (SAEB)). Fast electrons with energies of several or tens of kiloelectronvolts are responsible for the generation of the soft X rays in the discharge gap. Anomalous electrons whose energy is higher than the voltage across the gap provide for a minor (less than 5%) contribution to the beam current. The generation time of these electrons is equal to the SAEB generation time accurate to 0.1 ns. It is demonstrated that the anomalous electrons can be generated owing to the acceleration in the presence of the field in front of the moving background-electron multiplication wave. The spectra of the X-ray radiation generated by the fast electrons in the volume are calculated.  相似文献   

7.
With a diaphragm placed behind the anode foil, dual runaway electron beams have been provided in helium, hydrogen, nitrogen, and air under a pressure of several torrs to several dozen torrs and a high-voltage pulse amplitude of about 250 kV. These beams consist of two pulses with commensurable amplitudes with a time interval between them of several dozen picoseconds to several hundred picoseconds. It has been shown that the breakdown of the interelectrode gap at pressures from several torrs to several dozen torrs may occur in different regimes and dual pulses of the electron beam current are registered when the initial current through the gap is below 1 kA. It has been found that a supershort avalanche electron beam that consists of one pulse is generated when the delay of breakdown equals several hundred picoseconds. It has been shown that, when the gas pressure reaches several hundred Torr, including atmospheric pressure, the runaway electrons are detected behind the foil after the termination of the supershort avalanche electron beam pulse.  相似文献   

8.
Observations of rapid axial oscillations of an intense relativistic electron beam in a magnetic mirror are reported. The mirror field primarily provides radial confinement of the relativistic electrons. The axial confinement was achieved by placing thin aluminized mylar foils at the conjugate mirror field maxima. The region between these foils was filled with a few Torr air to provide a beam induced plasma for charge and current neutralization. The regions outside these foils were maintained at ~10-4 Torr. One foil formed the anode of a space-charge limited relativistic electron diode which launched the beam into the mirror. When the beam passed through the second foil it was no longer charge neutralized. In a manner quite similar to the anode foil oscillations observed by others, a space-charge limited electrostatic well was established which stopped the electrons and re-accelerated them through the foil-thereby reflecting the beam. When the reflected electrons re-entered the diode, they were once again "electrostatically" reflected. This process continued until the oscillating beam was either lost through the "virtual cathodes" outside the foils, dissipated in the drift region or quenched in the diode plasma after gap closure.  相似文献   

9.
A discharge in the presence of a nonuniform electric field and the generation of an ultrashort avalanche electron beam (UAEB) are studied in the insulating gas SF6 at the pressures 0.01–2.50 atm. High-voltage nanosecond pulses (about 150 and 250 kV) and the voltage pulses with an amplitude of 25 kV and a duration of tens of nanoseconds are applied across the gap. An electron beam is obtained behind the AlBe foil with a thickness of 45 μm at a sulfur hexafluoride pressure in a gas-filled diode of up to 2 atm. It is demonstrated that, at relatively high pressures (greater than 1 atm) and in the presence of high-voltage nanosecond pulses across the gap, the UAEB pulse FWHM increases. The spectra of the diffuse and contracted discharges in sulfur hexafluoride are measured.  相似文献   

10.
The effect of the anode-current magnetic field on the electron motion in a triode with a virtual cathode is considered. It is shown that the anode-current magnetic field influences the oscillation period and trajectories of electrons. The condition of self-isolation of the electron beam is investigated as a function of the diode parameter. It is shown that the displacement of the beam electrons under the action of the anode-current magnetic field leads to a decrease in the electron phase modulation and an increase in the spread in the electron oscillation amplitude; as a result, the generation efficiency of microwave radiation decreases.  相似文献   

11.
The mechanisms behind limitation of current of nonrelativistic high-current electron beams in the plasma-filled diode immersed in the external guiding magnetic field whose intensity is comparable with that of the beam self magnetic field are studied. It is shown that the beam current is limited by transmission capacity of the double layer between the cathode and anode plasma on the one hand and, on the other hand, by charge neutralization of the beam and by the decrease of the longitudinal velocity of the beam electrons under the action of the induced electric field and of the beam self magnetic field. The effect of the beam self fields on its cross-sectional current density and energy distributions is studied. Results of the numerical simulations are in good agreement with the experimental data.  相似文献   

12.
Conditions are studied under which an electron beam and a volume discharge with a subnanosecond rise time of a voltage pulse are produced in air under atmospheric pressure. It is shown that the electron beam appears in a gas-filled diode at the front of the voltage pulse in ∼0.5 ns, has a half-intensity duration of ≤0.4 ns and an average electron energy of ∼0.6 of the voltage across the gas-filled diode, and terminates when the voltage across the gap reaches its maximum value. The electron beam with an average electron energy of 60 to 80 keV and a current amplitude of ≥70 A is obtained. It is assumed that the electron beam is formed from electrons produced in the gap due to gas ionization by fast electrons when the intensity of the field between the front of the expanding plasma cloud and the anode reaches its critical value. A nanosecond volume discharge with a specific power input of ≥400 MW/cm3, a density of the discharge current at the anode of up to 3 kA/cm2, and specific energy deposition of ∼1 J/cm3 over 3 to 5 ns is created.  相似文献   

13.
激光氦离子源产生的MeV能量的氦离子因有望用于聚变反应堆材料辐照损伤的模拟研究而得到关注.目前激光驱动氦离子源的主要方案是采用相对论激光与氦气射流作用加速高能氦离子,但这种方案在实验上难以产生具有前向性和准单能性、数MeV能量、高产额的氦离子束,而这些氦离子束特性是材料辐照损伤研究中十分关注的.不同于上述激光氦离子产生方法,我们提出了一种利用超强激光与固体-气体复合靶作用产生氦离子的新方法.利用这种方法,在实验上,采用功率密度5×10~(18)W/cm~2的皮秒脉宽的激光脉冲与铜-氦气复合靶作用,产生了前向发射的2.7 MeV的准单能氦离子束,能量超过0.5 MeV的氦离子产额约为10~(13)/sr.二维粒子模拟显示,氦离子在靶背鞘场加速和类无碰撞冲击波加速两种加速机理共同作用下得到加速.同时粒子模拟还显示氦离子截止能量与超热电子温度成正比.  相似文献   

14.
双波段相对论返波振荡器模拟研究   总被引:5,自引:5,他引:0       下载免费PDF全文
 提出了一种采用单电子束实现C波段和X波段微波同时输出的新型相对论返波振荡器,该器件的束波作用区为中间用渐变段隔开的两段盘荷结构。使用Karat软件进行了2.5维全电磁粒子数值模拟,在工作电压为1 MV,电流为8 kA,导引磁场为3 T的条件下,输出微波功率大于1 GW,功率效率约为15%,输出的微波频率分别为5.42 GHz和9.58 GHz,二者频谱幅度相差2.17 dB,模式为TEM模。  相似文献   

15.
杨汉武  荀涛  高景明  张自成 《强激光与粒子束》2022,34(9):095002-1-095002-6
介绍了一种微秒长脉冲有磁场的真空二极管界面的设计和实验结果。采取了三种措施来抑制沿面闪络:一是阴极电子束挡板,用来拦截来自阴极和电子束漂移管的回流电子束;二是接地屏蔽板,使电场等势线和界面成约45°角,使阴极三结合点处发射的电子远离绝缘板;三是降低阴极三结合点处的场强,并使用一悬浮电位的金属环阻止电子倍增过程。计算了二极管内电场、磁场分布和电子束的运动轨迹并据此优化了真空界面的结构,实验验证了该二极管真空界面可以在400 kV、800 ns条件下正常工作,可以支持长脉冲高功率微波器件的研究。  相似文献   

16.
无箔二极管强流电子束空间密度分布初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过在强磁场条件下,利用环形刀口石墨阴极(刀口尺寸38~39mm)开展电子束轰击收集极内表面铜箔和垂直轰击金属靶片实验,对无箔二极管中电子束的空间密度分布进行了初步研究,并对其产生原因进行了分析。研究结果表明,电子束径向分布在37.2~40.2mm,存在密度较高区域(38.8~39.4mm)和密度最大值点(39.2mm),且均偏向于阴极外侧。无箔二极管环形阴极爆炸发射产生电子束的径向密度分布可用偏态分布近似。  相似文献   

17.
The electrical breakdown of a gas-filled diode with a highly nonuniform electric field is studied in the case when a 25-kV voltage pulse generates runaway electron beams with time-separated maxima of different duration behind anode foil. Experimental data are analyzed and numerically simulated using the PIC/MC code OOPIC-Pro. It is shown that, in terms of the model used, both beams arise at the cathode but their formation mechanisms differ. The first runaway electron beam no longer than 500 ps is attributed to the ionization mechanism; the second one, which may last several nanoseconds, is due to emission.  相似文献   

18.
The effect of the amplitude and rise time of a voltage pulse from a RADAN-303 pulser on the formation of an ultrashort avalanche electron beam (UAEB) in a gas diode is experimentally investigated. It is shown that, when the open-circuit voltage of the pulser exceeds an optimum value, the beam current amplitude and the gap voltage under which the UAEB is generated decrease.  相似文献   

19.
The influence of the voltage pulse rise time on the amplitude of a runaway electron beam and X-ray generation in air and nitrogen under atmospheric pressure is studied experimentally and theoretically. Generalization of the whistle criterion for the case of a nonuniform field is suggested. It is shown that the maximal energy of beam electrons and the beam current amplitude grow when the voltage pulse rise time decreases. It is found that the amplitude of the runaway electron current reaches a maximum at a certain curvature of the cathode. The maximal energy of electrons increases when the radius of curvature of the cathode exceeds the value at which the beam current amplitude is the highest. If the field is nonuniform, its critical value at which many electrons run away is more than an order of magnitude lower than in the uniform field.  相似文献   

20.
The effect of the self-field of an intense relativistic electron beam on its interaction with a dense medium was studied by solving a system of equations consisting of the kinetic equation for the fast electrons, the hydrodynamic equations for the plasma electrons, and Maxwell's equations for the electromagnetic field. It was assumed that the macroscopic parameters of the medium (its density, conductivity, and electron collision frequency) were independent of time. The system of equations was solved using high-order perturbation theory. The results show that a magnetic field is formed by the beam of fast electrons and to an equal degree by a current of thermalized electrons, which has not been taken into account before. It is shown also that the magnetic field of the beam affects its transmission through matter. In particular, the penetration depth of the electrons in matter and the transverse dimensions of the beam are both smaller than in a weak-current beam.Translated from Izvestiya Vysshykh Uchebnykh Zavedenii, Fizika, No. 10, pp. 19–24, October, 1987.The author deeply thanks K. A. Dergobuzov for support of the work, and A. V. Arzhannikov, V. A. Klimenko, and A. V. Lapp for useful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号