首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
设计了一种能在S波段和C波段实现稳定输出的高功率相对论速调管放大器,并使用电磁粒子PIC程序进行了模拟研究。模拟结果表明:采用700 kV,4 kA的电子束,在注入微波功率340 kW、注入微波频率分别为2.8 GHz和3.2 GHz的条件下,通过合理选择输入腔和中间腔的结构和工作模式、调节器件输出腔的腔长,模拟实现了S波段(3.2 GHz)和C波段(5.6 GHz)分别为1 GW和490 MW的微波输出,束波转换效率分别约为35%和17%。  相似文献   

2.
基于低磁场返波管振荡器的工作原理,设计了一个捷变频相对论返波管振荡器,该器件由两段对电子束参数要求基本一致的慢波结构串接而成,通过调节引导磁场强度实现器件频率的调节,使其分别工作于C波段和X波段。在电子能量和束流分别为670keV和8kA的条件下,当引导磁场强度为0.5T时,采用2.5维PIC程序模拟得到频率为6.28GHz、功率为1.0GW的微波输出;而当引导磁场强度为0.8T时,得到频率为9.25GHz、功率为0.75GW的微波输出。  相似文献   

3.
C波段相对论行波结构放大器设计   总被引:1,自引:1,他引:0       下载免费PDF全文
根据盘荷加载慢波结构的色散关系,设计了C波段高功率行波结构放大器,器件采用轴向微波功率提取降低输出端的反射,并在隔离段中加入微波吸收体切断放大器中自激振荡的正反馈过程,输出腔采用锥形过渡以降低Q值,减少电子注回流,有效抑制了放大器中自激振荡。在2.5维PIC模拟中得到功率890MW、频率5.64 GHz的微波输出,增益35.6 dB,效率32%。  相似文献   

4.
C波段高稳定度磁控管是目前磁控管的研究重点。对5.8GHz磁控管进行模拟研究,冷腔计算磁控管π模频率为5.863GHz,阳极用双端双隔模带结构磁控管的工作频率与相邻模式频率分隔度为44%。模拟磁控管输出频率为5.856GHz,输出微波功率约1.2kW。对研制的磁控管进行注入锁定实验研究,输出微波功率1.047kW,效率约为58%。磁控管锁频锁相后输出的频率和相位稳定。  相似文献   

5.
刘振帮  黄华  金晓  陈怀璧 《物理学报》2011,60(12):128402-128402
分析了同轴腔体间隙束流与电场的相互作用,推导了同轴腔体间隙的耦合系数和电子负载电导,并设计了104 W级注入微波驱动的X波段三重轴相对论速调管放大器,产生了GW级的微波功率输出.通过三维粒子模拟,设计了工作频率为9.37 GHz的三重轴相对论速调管放大器,在注入微波功率为70 kW、束压为600 kV、束流为5 kA的条件下,获得的输出微波功率达到1.1 GW,效率为37%,增益为42 dB. 关键词: 同轴腔体 束波互作用 X波段 三重轴相对论速调管放大器  相似文献   

6.
L波段双频磁绝缘线振荡器的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据角向分区产生双频率高功率微波(HPM)的设计思路,开展了基于谐振腔深度角向分区模型的L波段双频磁绝缘线振荡器(BFMILO)的实验研究,建立了BFMILO的实验系统和测量系统,热测了BFMILO的辐射方向图,通过辐射场功率密度积分得到了输出微波的功率.在电子束电压约为420kV,管电流约为34kA的条件下,L波段BFMILO输出的微波频率分别为1.26GHz和1.45GHz,对应的微波功率分别为398MW和222MW.并初步得到了谐振腔深度的角向分区比例不同的BFMILO的初步实验结果.实验研究得到了 关键词: 角向分区 磁绝缘线振荡器(MILO) 双频MILO(BFMILO) 高功率微波(HPM)  相似文献   

7.
X波段多频相对论返波振荡器的粒子模拟   总被引:4,自引:4,他引:0       下载免费PDF全文
采用过模同轴波纹型返波管,其互作用区由2段周期不同的波纹慢波结构组成,利用粒子模拟软件MAGIC进行数值模拟,得到了X波段稳定的3个频率微波输出。粒子模拟的结果为:在强流电子束电压为570 kV,电流为11.4 kA,引导磁场为0.72 T的条件下,获得的3个频率分别为9.575,10.025和10.475GHz,总微波功率为1.0 GW,效率为15.4%。通过对电压的调节,进一步获得了4个频率的微波输出。  相似文献   

8.
以实现GW级高功率微波源长时间稳定运行为目标,利用应用电子学研究所小型化Marx型脉冲功率源平台开展了L波段六腔衍射输出相对论磁控管长时间稳定运行实验研究。首先介绍了L波段六腔衍射输出相对论磁控管基本结构及长时间稳定运行实验装置基本情况,接着给出了测试系统布局及各参数测试方法,最后给出了实验研究结果:所研制的L波段衍射输出相对论磁控管在输出功率大于1 GW、重复频率10 Hz的条件下实现了超过55 min的长时间稳定运行,输出微波模式稳定,无竞争模式出现,中心频率为1.57 GHz。  相似文献   

9.
 叙述了基于P型硅半导体中的热载流子效应研制成功的一种单脉冲高功率微波探测器。这种高功率微波探测器具有承受微波功率高(比普通检波器高近六个量级)、时间响应快(响应时间小于2.0ns)等特点。探测器由P型硅传感单元和标准波导组成,其工作频率范围为波导的工作频率范围,根据不同需求可以在3.0GHz至30GHz的频率范围内制作成多种不同型号的探测器。也给出了工作在X波段的这种探测器的标定方法和标定结果,标定结果表明探测器的输出信号幅度正比于注入微波功率,输出电压值可达10V。该探测器很适合于高功率微波峰值功率测量,尤其在电磁干扰环境中具有优势,为解决目前高功率微波功率测量不准的技术难题提供了一种有效的技术手段。  相似文献   

10.
设计了一种用于S波段、工作带宽10%的相对论速调管放大器结构。该宽带管采用多间隙输入腔、两个中间腔和重叠模双间隙输出腔来拓展相对论速调管放大器(RKA)群聚段和输出段的带宽, 模拟得到基波调制深度大于80%时, RKA群聚段和输出段的带宽分别为11%和15%。整管模拟时, 通过调节注入微波频率和功率, 得到最大功率1.58 GW、3 dB相对工作带宽10%、带内微波功率不小于1 GW的输出微波。  相似文献   

11.
 为了便于模式变换器的设计,达到双频微波都能集中辐射的目的,提出一种轴向分区的双频磁绝缘线振荡器,该器件束波互作用区为中间隔开、两端不同周期、不同深度的慢波结构,使电子在上下游与不同频率特性的慢波结构进行束波互作用,得到稳定的双频微波输出。使用2.5维全电磁粒子模拟软件进行数值模拟,在工作电压450 kV,电流40 kA条件下输出微波功率为1.4 GW,功率效率约为7%,输出的微波频率分别为1.25 GHz和1.65 GHz,两者频谱幅度相差约为1.5 dB,模式为TEM模。  相似文献   

12.
设计了一种能在C波段和X波段实现稳定双频输出的带有非对称谐振反射腔的单电子束同轴相对论返波振荡器。采用耦合阻抗跃变型慢波结构,使用粒子PIC模拟软件进行了粒子模拟研究。模拟结果显示:轴向电场在系统中的分布得到改进,电子束的能散得到改善。在电子束电压511 kV,电流8.95 kA,引导磁场0.73 T的条件下,双频器件实现了8.09 GHz和9.91 GHz的双波段频率稳定输出,平均功率为1.0 GW,波束互作用效率为21.9%, 效率高于空心双波段返波管及其他双波段器件。器件辐射功率的拍频为1.82 GHz,拍波更为明显和稳定。模拟研究中同时发现, 随着慢波结构之间漂移段的变化,双频频率都呈现一种准周期的变化。  相似文献   

13.
设计了一种能工作在低磁场高功率的慢波器件,该器件通过谐振腔将切仑科夫振荡器与锥形放大器有机地结合,充分利用电子的能量,实现了高效的微波产生.给出了初步的实验结果,在束流电压450kV,电流2.3 kA,导引峰值磁场0.6T的情况下,得到230 MW,频率为10.33 GHz,模式TM01的微波输出,效率达到23%.实验结果与粒子模拟结果基本吻合.  相似文献   

14.
虚阴极振荡器中微波频率的研究   总被引:1,自引:0,他引:1  
 在虚阴极振荡器的实验中,同时得到了几百兆瓦5.17GHz和几兆瓦7.74GHz的微波输出。根据虚阴极振荡器的单电荷层模型可知,主频5.17GHz的微波由虚阴极自身振荡产生;7.74GHz 的微波由虚阴极自身振荡与虚阴极振荡或电子往返振荡产生的调制束流相互作用产生。  相似文献   

15.
多腔虚阴极振荡器研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 提出了一种具有预调制腔、主谐振腔和提取腔组成的多腔轴向提取虚阴极振荡器结构。腔体特性分析表明其在工作频段可以获得更高的提取效率。粒子模拟显示该结构在电压700 kV,电流23 kA的条件下,可输出功率大于1.7 GW,频率4.0 GHz,功率效率大于10%的微波。初步的实验研究获得了辐射功率约700 MW,频率约4.1 GHz的微波输出。对实验结果的进一步分析表明,通过适当加大器件虚阴极振荡工作区微波管直径的方法可以有效改善器件的谐振性能,从而获得更好的工作性能。  相似文献   

16.
L波段相对论返波振荡器初步实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
设计了一个紧凑型L波段相对论返波振荡器(RBWO),利用Karat 2.5维全电磁粒子模拟程序研究了器件内部束-波作用的物理过程。模拟结果表明:在二极管电压700 kV、电子束流10 kA、导引磁场为1.0 T时,能实现L波段2.23 GW高功率微波输出,平均效率约为31.8%。为验证模拟结果,在高阻加速器平台上进行了初步实验:当二极管电压为703 kV、电流10.6 kA、导引磁场为0.8 T时,实验获得了峰值功率1.05 GW、频率1.61 GHz、脉宽38 ns的高功率微波输出,其功率效率为14.4%。  相似文献   

17.
 提出一种高功率微波折叠式谐振腔径向速调管振荡器,用电子与电磁场相互作用的一维单电子模型分析了这种折叠式谐振腔径向速调管振荡器的特点。其特点为:径向尺寸小,起振电流低。用二维半PIC程序对折叠式谐振腔径向速调管振荡器进行数值模拟研究。结果表明,当二极管电压为380kV,电流为18kA时,输出微波功率峰值为1GW,主要微波频率为1.52GHz,输出微波为多频率成分微波。通过折叠式谐振腔的电子束得到很强的调制。  相似文献   

18.
Short-pulse, ultra-broadband sources of RF radiation are needed for a variety of new applications. To meet this demand, we have developed and optimized a single-beam Plasma Wave Tube (PWT), The PWT is a unique microwave/millimeter-wave source which utilizes the interaction between beamexcited electron plasma waves to generate kilowatt-power (~10 kW) radiation at microwave to millimeter-wave frequencies with a beam-to-radiation conversion efficiency of ⩾0.4%. In a single-beam PWT, an electron beam (⩽40 kV, ⩾200 A, 5-to-20-μs pulse width) is injected into a gas-filled (e,g., hydrogen) cylindrical waveguide. The beam first ionizes the gas to generate a plasma, and then nonlinearly interacts with the plasma to generate radiation from 6-to-60 GHz. Slew rates of up to 7 GHz/μs have been measured during a single beam pulse. The radiation has a wide instantaneous bandwidth, typically 10 GHz or wider. Electron-beam transport through the waveguide is accomplished with no externally applied magnetic fields because the beam space charge is cancelled by the background plasma  相似文献   

19.
L波段双频磁绝缘线振荡器的设计与粒子模拟   总被引:10,自引:10,他引:0       下载免费PDF全文
 提出了利用角向分区来产生双频高功率微波的思想,并根据常规磁绝缘线振荡器的互作用主要在轴向而与角向无关的物理机制,通过在常规磁绝缘线振荡器内设置谐振腔深度的角向分区,建立了L波段双频磁绝缘线振荡器的模型,并利用电磁模拟软件,优化设计了L波段双频磁绝缘线振荡器。粒子模拟的结果为:在电子束电压为530 kV,电流为45.5 kA的条件下,得到了稳定的双频高功率微波输出,其微波频率分别为1.28 GHz和1.50 GHz,周期平均功率约为2.65 GW,功率效率约为11%,两个频率的频谱幅度相差约0.4 dB。  相似文献   

20.
设计了一种适用于带状电子束高功率微波源的宽通带收集极,在有效吸收束-波相互作用后的带状电子束的同时,保证了带状电子束高功率微波源的工作模式——矩形波导TM11模式高效率地通过。研究结果表明:在13~27GHz范围内,功率传输效率大于95%,这一宽通带特性使得该类型的收集极与带状电子束高功率微波源能够更好配合,显著提高了微波源的模拟优化和实验调试效率;TM11模式微波的传输效率对收集极厚度和长度等参数不敏感;该类型收集极结构具有良好的散热能力,在不加外部水冷装置的条件下,仅靠空气自然对流冷却和辐射冷却,可以承受电流3kA、电压300kV、脉冲宽度30ns及重复频率50Hz带状电子束的连续冲击。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号