首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ye Z  Tan M  Wang G  Yuan J 《Talanta》2005,65(1):206-210
Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb3+ chelate, N,N,N1,N1-[2,6-bis(3′-aminomethyl-1′-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb3+ (BPTA-Tb3+), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric methods show that the nanoparticles are spherical and uniform in size, 45 ± 3 nm in diameter, strongly fluorescent with fluorescence quantum yield of 10% and a long fluorescence lifetime of 2.0 ms. The amino groups directly introduced to the nanoparticle’s surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human α-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of α-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10 ng ml−1 to about 100 ng ml−1 with the detection limit of 0.10 ng ml−1. The coefficient variations (CVs) of the method are less than 9.0%, and the recoveries are in the range of 84-98% for human serum sample measurements.  相似文献   

2.
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu3+ and Tb3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu3+ is strongly dependent on the pH values in weakly acidic to neutral media (pKa = 5.8, pH 4.8–7.5), while that of HTTA–Tb3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu3+ and HTTA–Tb3+ (the HTTA–Eu3+/Tb3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb3+ emission at 540 nm to its Eu3+ emission at 610 nm, I540 nm/I610 nm, as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu3+/Tb3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A290 nm/A325 nm, as a signal. This feature enables the HTTA–Eu3+/Tb3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA–Eu3+ and HTTA–Tb3+ into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.  相似文献   

3.
A lanthanide‐complex‐based ratiometric luminescence probe specific for peroxynitrite (ONOO?), 4′‐(2,4‐dimethoxyphenyl)‐2,2′:6′,2′′‐terpyridine‐6,6′′‐diyl]bis(methylenenitrilo)tetrakis(acetate)‐Eu3+/Tb3+ ([Eu3+/Tb3+(DTTA)]), has been designed and synthesized. Both [Eu3+(DTTA)] and [Tb3+(DTTA)] are highly water soluble with large stability constants at ≈1020, and strongly luminescent with luminescence quantum yields of 10.0 and 9.9 %, respectively, and long luminescence lifetimes of 1.38 and 0.26 ms, respectively. It was found that the luminescence of [Tb3+(DTTA)] could be quenched by ONOO? rapidly and specifically in aqueous buffers, while that of [Eu3+(DTTA)] did not respond to the addition of ONOO?. Thus, by simply mixing [Eu3+(DTTA)] and [Tb3+(DTTA)] in an aqueous buffer, a ratiometric luminescence probe specific for time‐gated luminescence detection of ONOO? was obtained. The performance of [Tb3+(DTTA)] and [Eu3+/Tb3+(DTTA)] as the probes for luminescence imaging detection of ONOO? in living cells was investigated. The results demonstrated the efficacy and advantages of the new ratiometric luminescence probe for highly sensitive luminescence bioimaging application.  相似文献   

4.
Four kinds of luminescent hybrid soft gels have been assembled by introducing the lanthanide (Eu3+, Tb3+) tetrakis β‐diketonate into the covalently bonded imidazolium‐based silica through electrostatic interactions. Here, the imidazolium‐based silica matrices are prepared from imidazolium‐derived organotriethoxysilanes by the sol–gel process, in which the imidazolium cations are strongly anchored within the silica matrices while anions can still be exchanged following application for functionalization of lanthanide complexes. The photoluminescence measurements indicated that these hybrid soft gels exhibit characteristic red and green luminescence originating from the corresponding ternary lanthanide ions (Eu3+, Tb3+). Further investigation of photophysical properties reveals that these soft gels have inherited the outstanding luminescent properties from the lanthanide tetrakis β‐diketonate complexes such as strong luminescence intensities, long lifetimes and high luminescence quantum efficiencies.  相似文献   

5.
Reaction of sodium p-sulfonatocalix[4]arene and TbCl3 in the presence of 2,2′-bipyridine-N,N′-dioxide (bpdo) gives the 2:1 supramolecular nanocapsule [[Tb(bpdo)2·4H2O]3+?{p-sulfonatocalix[4]arene4−}2], which further interacts with the [Tb(bpdo)4]3+ through charge-assisted π-stacking interactions forming a channel structure 1. In further investigation, we tried to use the terpyridine-1,1′,1′-trisoxide (tpto) instead of bpdo. Although we failed to isolate a supramolecular capsules based on the tpto, lanthanide and p-sulfonatocalix[4]arene, a layer structure derived from p-sulfonatocalix[4]arene with an unusual [Cu(tpto)2]2+ incorporation into the cavity of the calixarene and an outside [Cu(tpto)2]2+ balancing the charge, has been obtained. Fluorescence spectra show clearly that compound 1 possesses the luminescence characteristics of Tb3+ and the ligand bpdo can sensitize Tb3+ ion. Gas sorption experiment shows the channel structure 1 has highly selective gas sorption properties for water and methanol.  相似文献   

6.
The crystal and electronic structures, and luminescence properties of Eu2+, Ce3+ and Tb3+ activated LiSi2N3 are reported. LiSi2N3 is an insulator with an indirect band gap of about 5.0 eV (experimental value ∼6.4 eV) and the Li 2s, 2p states are positioned on the top of the valence band close to the Fermi level and the bottom of the conduction band. The solubility of Eu2+ is significantly higher than Ce3+ and Tb3+ in LiSi2N3 which may be strongly related to the valence difference between Li+ and rare-earth ions. LiSi2N3:Eu2+ shows yellow emission at about 580 nm due to the 4f65d1→4f7 transition of Eu2+. Double substitution is found to be the effective ways to improve the luminescence efficiency of LiSi2N3:Eu2+, especially for the partial replacement of (LiSi)5+ with (CaAl)5+, which gives red emission at 620 nm, showing highly promising applications in white LEDs. LiSi2N3:Ce3+ emits blue light at about 450 nm arising from the 5d1→4f15d0 transition of Ce3+ upon excitation at 320 nm. LiSi2N3:Tb3+ gives strong green line emission with a maximum peak at about 542 nm attributed to the 5D47FJ (J=3-6) transition of Tb3+, which is caused by highly efficient energy transfer from the LiSi2N3 host to the Tb3+ ions.  相似文献   

7.
A series of luminescent ion exchanged zeolite are synthesized by introducing various ions into NaY zeolite. Monometal ion (Eu3+, Tb3+, Ce3+, Y3+, Zn2+, Cd2+, Cu2+) exchanged zeolite, rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Y3+ and rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Zn2+ are discussed here. The resulting materials are characterized by Fourier transform infrared spectrum radiometer (FTIR), XRD, scanning electronic microscope (SEM), PLE, PL and luminescence lifetime measurements. The photoluminescence spectrum of NaY indicates that emission band of host matrix exhibits a blueshift of about 70 nm after monometal ion exchange process. The results show that transition metal ion exchanged zeolites possess a similar emission band due to dominant host luminescence. A variety of luminescence phenomenon of rare‐earth ion broadens the application of zeolite as a luminescent host. The Eu3+ ion exchanged zeolite shows white light luminescence with a great application value and Ce3+ exchanged zeolite steadily exhibits its characteristic luminescence in ultraviolet region no matter in monometal ion exchanged zeolite or bimetal ions exchanged zeolite.  相似文献   

8.
Novel mesoporous SBA-16 type of hybrids TTA-S16 and DBM-S16 were synthesized by co-condensation of modified β-diketone (TTA-Si and DBM-Si, DBM=1,3-diphenyl-1,3- propanepione, TTA=2-thenoyltrifluoroacetone) and tetraethoxysilane (TEOS) in the presence of Pluronic F127 as template, which were confirmed by FTIR, XRD, 29Si CP-MAS NMR, and N2 adsorption measurements. Novel organic-inorganic mesoporous luminescent hybrid containing RE3+ (Eu3+, Tb3+) complexes covalently attached to the functionalized ordered mesoporous SBA-16 (TTA-S16 and DBM-S16), which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that mesoporous hybrid material bpy-Eu-TTA-S16 present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the corresponding DBM-containing materials bpy-Eu-DBM-S16, while bpy-Tb-DBM-S16 exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding TTA-containing materials bpy-Tb-TTA-S16.  相似文献   

9.
采用水热法制备出Ca9Y(PO47:Ce3+,Tb3+纳米荧光粉,通过XRD、SEM和荧光光谱等对样品进行了分析,研究在Ca9Y(PO47基质中引入Ce3+,Tb3+离子对发光性能的影响规律。研究发现因Tb3+离子自身能量交叉驰豫的存在,使得单掺Tb3+时,通过调节Tb3+离子的浓度可以实现对发光颜色的控制。同时研究了Ce3+-Tb3+之间的能量传递为电多极相互作用的偶极-四极机制,Ce3+-Tb3+之间最大的能量传递效率为55.6%。Ca9Y(PO47:Ce3+,Tb3+的发光颜色可以通过激活离子之间的能量传递和共发射得到可控调节。SEM分析表明荧光粉颗粒尺寸在100 nm左右,分散性好。  相似文献   

10.
The luminescent properties of terbium ions are used to investigate the interaction of adriamycin and cisplatin with GH3/B6 pituitary tumor cells. Clinically relevant concentrations of adriamycin were found to quench the intensity (IC50 = 0.6 μM) and excited-state lifetime (τ/τ0 = 0.73) of the Tb3+—GH3/B6 complex. Inspection of the Tb3+—GH3/B6 emission spectrum and the visible absorption spectrum of adriamycin strongly strongly suggests that the quenching of Tb3+ luminescence by adriamycin is due to dipole-dipole resonant energy transfer; and, according to Forster's theory (R0 = 33.6 Å), the adriamycin receptor site is located ca. 40 Å away from the bound probe, at the lipid/protein interface. The quenching of Tb3+ luminescence by cisplatin is best explained by a static energy-exchange mechanism; in that the cisplatin receptor site is contiguous with the Tb3+ binding site at the outer surface of the membrane. The data suggest that, in the plasma membrane of tumorigenic cells, the adriamycin and ciplatin receptor sites are intimately associated with the same calcium-binding protein.  相似文献   

11.
Novel organic-inorganic mesoporous hybrid materials were synthesized by linking lanthanide (Tb3+, Eu3+) complexes to the mesoporous MCM-41 through the modified meta-methylbenzoic acid (MMBA-Si) using co-condensation method in the presence of the cetyltrimethylammonium bromide (CTAB) surfactant as template. The luminescence properties of these resulting materials (denoted as Ln-MMBA-MCM-41, Ln=Tb, Eu) were characterized in detail, and the results reveal that luminescent mesoporous materials have high surface area, uniformity in the ordered mesoporous structure. Moreover, the mesoporous material covalently bonded Tb3+ complex (Tb-MMBA-MCM-41) exhibits the stronger characteristic emission of Tb3+ and longer lifetime than Eu-MMBA-MCM-41 due to the triplet state energy of organic legend MMBA-Si matches with the emissive energy level of Tb3+ very well.  相似文献   

12.
In this work, we developed a simple and sensitive method for the detection of cysteine (Cys) by employing terbium ion (Tb3+)-promoted G-qudraplex (G4/Tb) as a luminescent probe, which is based on Ag+-mediated conformational change of G4/Tb. Due to Ag+ is able to compete with Tb3+ to bind guanine at G4, the presence of Ag+ can lead to the formation of G4/Tb–Ag+ complex and disrupt the structure of G4/Tb. Meanwhile, the binding of Ag+ with G4/Tb will also cause the alteration of the excited state of G4 and more efficient energy transfer from G4 to Tb3+, enhancing the luminescence of G4/Tb. However, upon the addition of Cys, Ag+ will be released from G4/Tb–Ag+ complex because of the high affinity of Cys to Ag+. This results in the re-formation of the conformation of G4/Tb and the decrease of the luminescence of G4/Tb. So, Ag+-enhanced luminescence of G4/Tb is associated with its conformational transformation. As a luminescent probe for Cys, G4/Tb not only shows excellent selectivity and sensitivity with a detection limit of 20 nM, but also possesses the features of simple preparation, easy reproducibility, and eliminating the interferences from background fluorescence. We envision that the presented strategy might provide new insight into the biosensing applications of lanthanide complex.  相似文献   

13.
Bo Song  Jingli Yuan 《Talanta》2007,72(1):231-236
Production of singlet molecular oxygen (1O2) in the aerobic oxidation of ascorbic acid catalyzed by copper ion was measured and characterized using [4′-(9-anthryl)-2,2′:6′,2″-terpyridine-6,6″-diyl]bis(methylenenitrilo)tetrakis(acetate)-Eu3+ (ATTA-Eu3+) as a highly sensitive and selective time-resolved luminescence probe for 1O2. The 1O2 produced in the reaction was further characterized and confirmed by (i) chemical trapping of 1O2 with 9,10-diphenylanthracene (DPA), the corresponding endoperoxide was detected by HPLC and (ii) spin trapping of 1O2 with 2,2,6,6-tetramethyl-4-piperidinol (TMP-OH), the corresponding free radical of TMP-OH oxide (TMPO) was detected by electron spin resonance (ESR) spectroscopy. The effects of deuterium oxide, sodium azide and histidine on the 1O2 signal were investigated. The mechanism investigation of 1O2 production implied that the ascorbic acid-Cu(I) complex formed in the reaction could be an important intermediate for the 1O2 production. The reaction of ascorbic acid with copper ion monitored by 1H NMR and absorption spectroscopy demonstrated the formation of a copper ion-ascorbic acid complex. Except for Cu2+ and Cu+-ascorbic acid systems, no detectable 1O2 was produced in other transition metal cation-ascorbic acid systems in the studied range.  相似文献   

14.
The synthesis of three novel pyrazole-containing complexing acids, N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]-4-methoxypyridine}tetrakis(acetic acid)( 1 ), N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]pyrazine}-tetrakis(acetic acid) ( 2 ), and N,N,N′,N′-{6, 6′-bis[3-(aminomethyl)pyrazol-1-yl]-2, 2′-bipyridine}tetrakis(acetic acid) ( 3 ) is described. Ligands 1–3 formed stable complexes with EuIII, TbIII, SmIII, and DyIII in H2O whose relative luminescence yields, triplet-state energies, and emission decay lifetimes were measured. The number of H2O molecules in the first coordination sphere of the lanthanide ion were also determined. Comparison of data from the EuIII and TbIII complexes of 1–3 and those of the parent trisheterocycle N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-l-yl]pyridine}tetrakis(acetic acid) showed that the modification of the pyridine ring for pyrazine or 2, 2′-bipyridine strongly modify the luminescence properties of the complexes. MeO Substitution at C(4) of 1 maintain the excellent properties described for the parent compound and give an additional functional group that will serve for attaching the label to biomolecules in bioaffinity applications.  相似文献   

15.
We have successfully synthesized Eu3+-doped TbPO4 nanowires, which are orderly organized to form bundle-like structure. A thermal treatment up to 600 °C does not modify the size, shape and structure of as-synthesized sample. Due to the energy overlap between Tb3+ and Eu3+, an efficient energy transfer occurs from Tb3+ to Eu3+. The effects of Eu3+ concentration and thermal treatment on the luminescent properties of Eu3+ are investigated. The increase of Eu3+ concentration leads to the increase of the energy transfer efficiency from Tb3+ to Eu3+, but also enhances the probability of the interaction between neighboring Eu3+, which results in the concentration quenching. With the heat-treatment, the luminescence of Eu3+ presents an obvious increase, but almost no change for the luminescence of Tb3+. This difference is explained based on the TGA, DTA, and fluorescent decay dynamics analyses.  相似文献   

16.
Luminescent Eu3+/Tb3+ doped mesoporous bioactive glass nanofibers (MBGNFs) with average diameter of 100-120 nm were fabricated by electrospinning method. Pluronic P123 and N-cetyltrimethylammonium bromide (CTAB) were used as co-surfactants to generate porous structure of the nanofibers. N2 adsorption-desorption measurement reveals that the MBGNF:Eu3+ have a surface area of 188 m2 g−1, a pore volume of 0.246 cm3 g−1 and average pore size of 4.17 nm, and the MBGNF:Tb3+ have a surface area of 171 m2 g−1, a pore volume of 0.186 cm3 g−1 and average pore size of 3.65 nm. Photoluminescence measurements reveal that the MBGNF:Eu3+ show strong red emission dominated by the 5D0 → 7F2 transition of Eu3+ at 614 nm with a lifetime of 1.356 ms, and MBGNF:Tb3+ show strong green emission dominated by the 5D4 → 7F5 transition of Tb3+ at 544 nm with a lifetime of 1.982 ms. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of MBGNF. These luminescent nanofibers show sustained release properties for ibuprofen (IBU) in vitro. The emission intensities of Eu3+ in the drug delivery system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.  相似文献   

17.
The interaction of oligochitosan and tobacco cells has been investigated by fluorometric method using two Eu3+ complexes as the probes in this work. Based on the reaction of tobacco cells with oligochitosan conjugated to a strongly fluorescent Eu3+ complex 4,4′-bis(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedion-6″-yl)chlorosulfo-o-terphenyl-Eu3+ (oligochitosan-BHHCT-Eu3+ conjugate), the binding kinetic process of oligochitosan-tobacco cells was fluorescently imaged. The results indicate that oligochitosan can be specifically bound to the walls as well as the membranes of tobacco cells. A sensitive and selective Eu3+ complex luminescence probe specific for singlet oxygen, [4′-(10-methyl-9-anthryl)-2,2′:6′,2″-terpyridine-6,6″-diyl]bis(methylenenitrilo)tetrakis (acetate)-Eu3+, was used for developing a new time-resolved fluorescence assay method for the determinations of indole-3-acetic acid (IAA) and peroxidase produced in the cells during the interaction of oligochitosan and tobacco cells. The assays are sensitive with the detection limits of 32 nM for IAA, and 1.2 nM for peroxidase, respectively. The concentration changes of IAA and peroxidase induced by oligochitosan in tobacco cells reveal that oligochitosan can effectively induce the increase of IAA concentration, accompanied by the decrease of peroxidase concentration. These results give a primary and reliable evidence to explain the growth-promoting mechanism of oligochitosan on the plants at molecular level.  相似文献   

18.
A series of tridentate ligands N,N-bis-[(di-substituted-1-pyrazolyl)methyl]arylamines 2-3a,b and benzylamine 4a,b, tetradentate N,N′-bis-[(di-substituted-1-pyrazolyl)methyl]para-phenylenediamines 7a,b and hexadentate N,N,N′,N′-tetra-[(di-substituted-1-pyrazolyl)methyl]para-phenylenediamines 8a,b has been prepared in good yield by condensation of arylamines, benzylamine or para-phenylenediamine with N-hydroxymethyl disubstituted pyrazoles 1a,b. The synthesis and characterisation of these various polydentate ligands are described.  相似文献   

19.
By self-assembly in aqueous solution, calix- (CAS) and thiacalix[4]arene-p-tetrasulfonate (TCAS) formed luminescent complexes TbIII·(CAS)2 and TbIII·TCAS, respectively, which were utilized as a host for cationic guests. Addition of 1-ethylpyridinium guest quenched luminescence of TbIII·(CAS)2 in accordance with the Stern-Volmer (SV) relation with a low detection limit (D.L.) of 5.94 × 10−8 M (S/N = 3, M ≡ mol dm−3). On the other hand, 1-ethylquinolinium quenched luminescence of TbIII·TCAS most efficiently, affording a very low D.L. (6.71 × 10−10 M). The agreement of the SV coefficients obtained with luminescent intensity (KSV,all = 6.74 × 106 M−1) and lifetime (KSV,Tb = 6.50 × 106 M−1) implied that dynamic quenching of 5D4 excited state of TbIII was predominant in the quenching processes. The quenching rate was estimated to be kq,Tb = 9.94 × 109 M−1 s−1, which was as fast as diffusion-limited rate. Quenching of TbIII·(CAS)2 was also applied to detection of NAD+, with a D.L. of 2.78 × 10−7 M.  相似文献   

20.
Four tetradentate nitrogen ligands, viz. dichloro{[N,N-diphenyl-N,N-di(quinoline-2-methyl)]-1,2-ethylene diamine} (1), {[N,N-dioctyl-N,N-di(quinoline-2-methyl)]-1,2-ethylene diamine} (2), {[N,N-dibenzyl-N,N-di(quinoline-2-methyl)]-1,2-ethylene diamine} (3), and (1R,2R)-(−)-N,N-di(quinoline-2-methyl) di-iminocyclohexane (4), were investigated as novel complexing ligands in iron-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate where ethyl-2-bromoisobutyrate was the initiator in o-xylene at 90 °C. With ligands 1 and 2 the experimental molecular weights increased gradually with monomer conversion. High to moderate conversions (87%, 43%) were obtained in relatively short times (90 min for 1 and 30 min for 2), which indicates an efficient catalyst system, but after these times a dramatic increase in viscosity of the polymerization medium led to loss of control. It is noteworthy that polymerization proceeded in a controlled manner with ligand 1, which has two rather bulky substituents on the N-atom. Such bulky ligands did not work for a copper-based system, where they led to excessive terminations or other side reactions. When the bulkiness of the substituents was significantly increased, as in ligand 3, a decrease in polymerization rate and loss of control occurred. Ligand 4 was less efficient than the other ligands, probably because the ethylene bridge was replaced by cyclohexane bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号