首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
通过高能球磨的研磨,直接由普通α-Fe2O3粗颗粒制得了粒径约为10nm的α-Fe2O3纳米微粒.发现所得纳米微粒的室温M?ssbauer谱为不对称向内加宽的磁分裂六线峰.分析表明,不对称向内加宽现象主要由集体磁激发效应所引起.球磨所得α-Fe2O3纳米晶具有很高的各向异性常数值(K=8.9×103J·m-3).  相似文献   

2.
陈力勤  钟淮真  陈日耀  郑曦  陈震 《电化学》2004,10(4):452-459
应用sol gel法制备纳米α Fe2O3、TiO2及α Fe2O3 TiO2粉体,并以其作前驱体制得该纳米微粒与海藻酸钠的复合膜.由红外光谱(FT IR)、X 射线粉末衍射(XRD)、荧光光谱(PL)、透射电子显微镜(TEM)和循环伏安(I V)等物理化学方法表征、测定各复合薄膜的表面结构与催化活性.紫外 可见吸光光度法等研究结果表明,以杀菌紫外灯作光源,在纳米Fe2O3、TiO2及α Fe2O3 TiO2与海藻酸钠的复合膜悬浮液中,亚甲基蓝可被快速脱色降解,若于α Fe2O3中加入15%的TiO2,其α Fe2O3 TiO2复合晶体比单一的α Fe2O3或TiO2具有更高的光降解活性.  相似文献   

3.
以具有生物相容性的三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯为表面活性剂,利用多醇合成法制备了Fe3O4纳米微粒;采用X射线粉末衍射仪、傅立叶变换红外光谱仪及透射电子显微镜分析了Fe3O4纳米微粒的晶体结构、化学结构及显微结构,采用振动样品磁强计测定了其磁性能.结果表明,所制得的Fe3O4磁性纳米微粒结晶度高,在室温下显示近似超顺磁性.采用Langevin方程对Fe3O4纳米微粒的磁滞回线进行拟合,结果显示其为磁性单畴.此外,Fe3O4磁性纳米微粒在无机和有机溶剂中均具有很好的分散性,显示出广阔的应用前景.  相似文献   

4.
α-Fe2O3掺杂对In2O3电导和气敏性能的影响   总被引:9,自引:1,他引:9  
用化学共沉淀法制备了α Fe2O3掺杂的In2O3纳米晶微粉,研究了α Fe2O3掺杂对In2O3电导和气敏性能的影响. 结果表明, α Fe2O3和In2O3间可形成有限固溶体In2-xFexO3(0≤x≤0.40); Fe3+对In2O3晶格中In3+格位的部分取代,大大增强了阴阳离子间的结合力,导致材料中氧空位VO×数骤降、 自由电子的浓度变稀和电导下降. n(Fe3+):n(In3+)=5 :5的共沉淀粉于800 ℃下灼烧4 h所得的α Fe2O3掺杂In2O3传感器元件,对45 μmol•L-1 C2H5OH的灵敏度达54.0,为相同浓度干扰气体汽油的8倍多.  相似文献   

5.
Fe3O4纳米微粒是一种制备磁性液体的重要组成部分。但Fe3O4纳米微粒不稳定,极易氧化成γ-Fe2O3,其磁化强度也会明显降低[1-2]。铁氧体还易为酸溶解,化学反应式为:MFe2O4 8H M2 2Fe3 4H2O式中M为Fe、Co、Mn等二价金属。在Massart法制备酸性离子型磁性液体的方法中,采用了Fe(NO  相似文献   

6.
纳米氧化铁的电化学合成   总被引:1,自引:0,他引:1  
张强  张彰  夏义本 《化学研究》2004,15(4):10-13
采用金属铁为"牺牲"阳极,不锈钢片为阴极,在无隔膜电解槽中,用电化学法合成纳米氧化铁.通过XRD、FTIR、TG DSC及粒径分布等测试方法对所得的纳米粒子进行了表征和分析.实验表明:离心后得到的胶体放置于40℃的真空干燥箱中干燥后,得到无定型纳米氧化铁粒子;经320℃煅烧3h后,粒子转化为γ Fe2O3,平均粒径为22.0nm;进一步提高煅烧温度,在540℃煅烧3h后,可得到平均粒径为35.2nm的α Fe2O3.  相似文献   

7.
纳米磁性Fe_3O_4-SiO_2复合材料的制备和表征   总被引:2,自引:0,他引:2  
刘海弟  赵璇  陈运法 《化学研究》2007,18(2):21-23,31
向硅酸四乙酯凝胶体系中加入纳米磁性Fe3O4,得到了Fe3O4-SiO2复合材料,利用BET方法测定了其比表面积和孔分布,用TEM分析观察了其粒子形貌,并测定了复合材料的饱和磁强度曲线,研究表明:这种材料的饱和磁强度较纳米Fe3O4有所下降,而比表面积和孔容明显增大.  相似文献   

8.
内部结构不对称复合微球是指无机粒子在复合微球内部呈现规律性、不对称分布的一类微球.采用细乳液聚合的方法一步合成了平均粒径0.8μm、磁含量为46.67%、比饱和磁化强度为23.20 emu/g的内部结构不对称PSt/Fe3O4磁性复合微球.详细考察了Fe3O4纳米粒子表面修饰剂含量、乳化剂、助乳化剂、超分散剂、细乳化时间等因素对于复合微球形貌的影响,探讨了内部结构不对称复合微球的形成机理.同时通过TEM(透射电子显微镜),FTIR(红外光谱),VSM(振动样品磁强计),TG(热失重分析)以及激光粒度仪等表征手段对微球内部形貌、磁化强度及粒径等进行了表征,确定Fe3O4纳米粒子表面性质是微球呈现内部结构不对称的决定性因素.  相似文献   

9.
超顺磁性高分子微球的制备与表征   总被引:20,自引:2,他引:18  
用化学共沉淀方法制备了Fe3O4纳米微粒,并用油酸(十八烯酸)和十二烷基苯磺酸钠为双层表面活性剂进行表面修饰,制备了稳定的水分散性纳米Fe3O4可聚合磁流体.在Fe3O4磁流体存在下,将苯乙烯与甲基丙烯酸通过乳液聚合方法制备了磁性高分子微球.透射电镜研究表明,Fe3O4微粒的平均粒径在10nm左右,乳液聚合形成的磁性高分子微球的粒径平均约为130nm;用超导量子干涉仪对微粒及高分子微球进行了磁性表征,结果表明,合成的Fe3O4纳米微粒以及磁性高分子微球均具有超顺磁性.同时,还用红外光谱及X射线衍射表征了磁性高分子微球的化学成分和晶体结构.用热失重方法测得磁性高分子微球中磁性物质的含量为23.6%.  相似文献   

10.
由共沉淀法和Stober法制备了伯胺基功能化SiO2稳定的Fe3O4磁性纳米粒子Fe3O4@SiO2-NH2;Fe3O4@SiO2-NH2与二异氰酸酯及咪唑阳离子二醇、聚乙二醇的反应使其表面形成阳离子型聚氨酯稳定层;通过阳离子型聚氨酯与CdTe量子点表面修饰的巯基乙酸间的电荷相互作用,制备得到了Fe3O4/CdTe/聚氨酯纳米复合物.用X射线衍射(XRD)、红外吸收光谱(FTIR)、热重分析(TGA)、透射电子显微镜(TEM)、磁强计(VSM)、紫外吸收光谱(UV)、荧光发射光谱(PL)表征了该纳米复合物的结构与性能.结果表明,CdTe量子点均匀地分散在Fe3O4@SiO2磁性纳米粒子周围,所得纳米复合物在溶剂中分散均匀,不团聚,且具有超顺磁性,并保持了CdTe量子点的荧光性能.  相似文献   

11.
新型磁性纳米金修饰过氧化氢生物传感器的研制   总被引:1,自引:0,他引:1  
利用共沉淀法合成纳米Fe3O4颗粒,将半胱氨酸吸附到纳米Fe3O4微粒表面,借助半胱氨酸的巯基(-SH)对纳米金的强烈吸附,使纳米金自组装到磁性颗粒上,再通过静电吸附作用自组装辣根过氧化酶(HRP),合成了Fe3O4/Cys/Au/HRP纳米复合粒子,最后通过磁力将其修饰到固体石蜡碳糊电极表面,制得新型过氧化氢生物传感器.以对苯二酚作为电子媒介,用计时电流法对H2O2进行测定,线性范围为2.4 X10-3~6.0×10-6mol/L,检出限(S/N=3)为2.5 X 10-6mol/L,响应时间小于10 s.磁性纳米微粒Fe3O4/Cys/Au能够高效地保持HRP的生物活性.该新型传感器已用于实际样品测定.  相似文献   

12.
采用醋酸铵作保护剂在200℃下制备了单分散的400 nm粒径的Fe3O4空心纳米球.通过改变实验条件,对产品的形貌、内部结构和粒径进行了调控合成,得到了粒径范围在100~200 nm的实心纳米球和片形结构的Fe3O4纳米材料.采用SEM、TEM和XRD等对样品进行了表征.结果表明,所得尖晶石型Fe3O4纳米晶粒径均匀,分散度好.利用振动样品磁场计检测了不同形貌样品的磁性能.结果显示,Fe3O4纳米空心球的饱和磁化强度和矫顽力均大于Fe3O4纳米片的对应值.  相似文献   

13.
报道了一种低温(60℃~100℃)溶剂控制合成立方相Fe3O4及正交相FeOOH等纳米材料的简易方法,即采用氯化亚铁为铁源,六亚甲基四胺为弱碱源,借助回流装置,通过改变反应温度、溶剂(分别以水、水与乙醇、水与乙二醇为溶剂)、时间等实验条件,合成出正交相的FeOOH、正交相FeOOH与立方相Fe3O4的混合物以及立方相Fe3O4磁性纳米粒子.利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、物性磁测量系统以及穆斯堡尔光谱仪对产物进行了表征和分析.结果显示,所制备的混合相磁性纳米粒子为片状和棒状,而立方相的的Fe3O4磁性纳米粒子呈颗粒状.磁测量表明立方相的Fe3O4比混合相磁性纳米粒子有更大的磁饱和强度,对立方相的Fe3O4纳米粒子进行穆斯堡尔谱分析可以明确判断所合成的样品是Fe3O4,而不是γ-Fe2O3.此外,通过对实验过程、现象及表征结果等的分析;对不同条件下Fe3O4磁性纳米粒子的形成机理做了初步探讨.  相似文献   

14.
报道了一种低温(60℃~100℃)溶剂控制合成立方相Fe3O4及正交相FeOOH等纳米材料的简易方法,即采用氯化亚铁为铁源,六亚甲基四胺为弱碱源,借助回流装置,通过改变反应温度、溶剂(分别以水、水与乙醇、水与乙二醇为溶剂)、时间等实验条件,合成出正交相的FeOOH、正交相FeOOH与立方相Fe3O4的混合物以及立方相Fe3O4磁性纳米粒子.利用X射线衍射仪(XRD)、透射电子显微镜(TEM)、物性磁测量系统以及穆斯堡尔光谱仪对产物进行了表征和分析.结果显示,所制备的混合相磁性纳米粒子为片状和棒状,而立方相的的Fe3O4磁性纳米粒子呈颗粒状.磁测量表明立方相的Fe3O4比混合相磁性纳米粒子有更大的磁饱和强度,对立方相的Fe3O4纳米粒子进行穆斯堡尔谱分析可以明确判断所合成的样品是Fe3O4,而不是γ-Fe2O3.此外,通过对实验过程、现象及表征结果等的分析;对不同条件下Fe3O4磁性纳米粒子的形成机理做了初步探讨.  相似文献   

15.
纳米Fe2O3/高氯酸铵复合粒子的制备及其热分解性能研究   总被引:8,自引:1,他引:7  
马振叶  李凤生  陈爱四  白华萍 《化学学报》2004,62(13):1252-1255,J004
用溶剂-非溶剂法制备了纳米Fe2O3/高氯酸铵(AP)复合粒子,并用TEM,SEM,XRD和ICP对其进行了表征.为了研究纳米复合粒子中纳米Fe2O3对AP热分解的催化性能,将相同比例的微米Fe2O3和纳米Fe2O3与AP分别简单混合后作对比,并用DTA对三种样品进行了热分析.结果表明,三种样品中的Fe2O3粒子都能催化AP的热分解;但纳米Fe2O3粒子的催化性能优于微米Fe2O3粒子,纳米Fe2O3/AP复合粒子中纳米Fe2O3对AP的催化性能优于纳米Fe2O3与AP简单混合物.与纳米Fe2O3与AP简单混合的样品相比,纳米复合粒子中的AP高温分解峰温降低20.1℃,低温分解峰几乎消失,表观分解热由850.2J/g提高到1080.8J/g.证明纳米Fe2O3与AP的复合处理能显著提高纳米Fe2O3对AP热分解的催化性能.并用不同样品中AP热分解的动力学参数对所得结果进行了理论分析.  相似文献   

16.
XRD研究表明 ,作为乙苯脱氢催化剂中的氧化铁活性组分 ,具有反式尖晶石结构的Fe3O4 比刚玉型的α Fe2O3 更易与钾助催化剂发生相互作用 :α Fe2O3-K2O需经850℃煅烧才能生成多铁酸钾 ,但在Fe3O4 -K2O体系中只需700℃即可.而且 ,钾还可抑制Fe3O4 被氧化为α Fe2O3 的进程 ,在空气中 ,Fe3O4 只需300℃煅烧即可明显转化为α Fe2O3 ,但同样的转化在Fe3O4 K2O体系中要经700℃煅烧才会明显地发生.实验结果表明 ,某种形态的多铁酸钾可能是催化剂中的储钾相.  相似文献   

17.
采用溶剂热法制备了单分散Fe3O4纳米粒子,以甲基丙烯酸(MAA)和二乙烯基苯(DVB)为聚合单体,在沉淀聚合过程中通过磁场诱导自组装制备了一维高磁响应性永久连接的Fe3O4/P(MAA-DVB)纳米链.采用扫描电镜(SEM),透射电镜(TEM),X射线衍射仪(XRD),热重分析(TGA)及振动样品磁强计(VSM)等对其形貌、磁含量和磁响应性等进行了分析表征.结果表明,该法制备的一维Fe3O4/P(MAA-DVB)纳米链的磁含量为91%时,其比饱和磁化强度为72emu/g.在外磁场存在条件下,一维Fe3O4/P(MAA-DVB)纳米链将按外界磁场的方向取向.此外,每个豆荚内的Fe3O4纳米粒子规则的排列在一条线上,并通过P(MAA-DVB)聚合物使其均匀分布.  相似文献   

18.
采用表面引发原子转移自由基聚合方法合成了核壳结构的磁性高分子纳米微粒. 作为聚合反应引发剂的3-氯丙酸, 首先与油酸修饰的Fe3O4纳米微粒表面的部分油酸置换, 然后在Fe3O4纳米微粒表面引发甲基丙烯酸甲酯聚合, 合成的纳米复合材料用TEM, FTIR, XRD和DSC表征. 磁性测试结果表明, 所制备的磁性高分子纳米微粒仍具有超顺磁性, 但由于聚合物的存在, 其饱和磁化强度降低.  相似文献   

19.
利用种子生长法制备了磁性Fe2O3/Au/Ag复合纳米粒子,采用UV-vis和SEM对其光学性质以及表面结构的变化进行了表征.通过调节硝酸银的用量,制备了一系列具有不同Ag壳层厚度和表面结构的双金属外壳纳米粒子.以苯硫酚(TP)为探针分子,研究了不同Ag壳厚度的磁性纳米粒子的表面增强拉曼散射(SERS)活性.结果表明其SERS活性与表面结构的改变有关,在同时出现Ag和Au光学性质的Fe2O3/Au/Ag复合纳米粒子表面可观察到最强的SERS效应,这与表面的针孔效应以及Ag和Au之间的耦合增强作用有关.考察了Fe2O3/Au/Ag复合纳米粒子的磁富集作用,并利用SERS原位监测磁富集溶液中低浓度TP的能力,研究结果表明通过磁富集可提高SERS检测限,并且Fe2O3/Au/Ag的磁富集能力较Fe2O3/Au弱,但前者SERS信号较强.  相似文献   

20.
通过静电纺丝法制备出含有Fe3O4纳米微粒的TiO2纳米纤维,再采用浸渍还原法将Au纳米微粒嵌入到TiO2纳米纤维上,制备出一种具有较强磁性和良好可见光响应能力的复合光催化材料.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见固体漫反射光谱仪(UV-VisDRS)等对样品的结构和形貌进行表征,并以降解罗丹明B(RhB)为模型反应,考察了样品在可见光照射下的光催化性能.结果表明,嵌入Au纳米微粒可使复合纳米纤维在可见光下降解RhB时表现出非常好的降解速率和降解率;同时,将Fe3O4纳米微粒嵌入TiO2纳米纤维内部可以赋予材料较强的磁性,使材料便于分离和重复利用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号