首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A robust self-template strategy is used for facile and large-scale synthesis of porous multishell gold with controllable shell number, sphere size, and in situ surface modification. The process involved the rapid reduction of novel Au-melamine colloidal templates with a great amount of NaBH4 in presence of poly(sodium-p-styrenesulfonate) (PSS). After soaking the templates in other metal salt solution, the obtained bimetallic templates could also be generally converted into bimetallic multishell structures by same reduction process. In the hydrogenation of 4-nitrostyrene using NH3BH3 as a reducing agent, the porous triple-shell Au with surface modification (S-PTSAu) exhibited excellent selectivity (97 %) for 4-aminostyrene in contrast with unmodified triple-shell Au. Furthermore, it also showed higher enhancement of catalytic activity under irradiation of visible light as compared to similar catalysts with fewer shells.  相似文献   

2.
An intermediate‐template‐directed method has been developed for the synthesis of quasi‐one‐dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core–shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction intermediates played an important role in the preparation, which fabricated the framework and provided a localized reducing agent for the reduction of the Au and Pt precursors. The Pt7Au PABNTs showed higher electrocatalytic activity and durability in the oxygen‐reduction reaction (ORR) in 0.1 M HClO4 than porous Pt nanotubes (PtNTs) and commercially available Pt/C. The mass activity of PABNTs was 218 % that of commercial Pt/C after an accelerated durability test. This study demonstrates the potential of PABNTs as highly efficient electrocatalysts. In addition, this method provides a facile strategy for the synthesis of desirable hetero‐nanostructures with controlled size and shape by utilizing an intermediate template.  相似文献   

3.
Poly(styrene‐bN‐isopropylacrylamide) (PSt‐b‐PNIPAM) with dithiobenzoate terminal group was synthesized by reversible addition‐fragmentation‐transfer polymerization. The dithiobenzoate terminal group was converted into thiol terminal group with NaBH4, resulting thiol‐terminated PSt‐b‐PNIPAM‐SH. After PSt‐b‐PNIPAM‐SH assembled into core‐shell micelles in aqueous solution, gold nanoparticles were in situ surface‐linked onto the micelles through the reduction of gold precursor anions with NaBH4. Thus, temperature responsive core/shell micelles of PSt‐b‐PNIPAM surface‐linked with gold nanoparticles (PSt‐b‐PNIPAM‐Au micelles) were obtained. Transmission Electron Microscopy revealed the successful linkage of gold nanoparticles and the dependence of the number of gold nanoparticles per micelle on the molar ratio of HAuCl4 to thiol group of PSt‐b‐PNIPAM. Dynamic Light Scattering analysis demonstrated thermo‐responsive behavior of PSt‐b‐PNIPAM‐Au micelles. Changing the temperature of PSt‐b‐PNIPAM‐Au micelles led to the shrinkage of PNIPAM shell and allowed to tune the distance between gold nanoparticles. Ultraviolet–visible (UV–vis) spectroscopy clearly showed the reversible modulation of UV–vis absorbance of PSt‐b‐PNIPAM‐Au micelles upon heating and cooling. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5156–5163, 2007  相似文献   

4.
Au porous nanotubes (PNTs) were synthesized by a templating technique that involves the chemical synthesis of Ag nanowire precursors, electroless surface modification with Au, and selective etching. A subsequent galvanic replacement reaction between [PtCl6]2? and residual Ag generates Ptdecorated Au porous nanotubes (Pt/Au PNTs), which represents a new type of selfsustained high surface area electrocatalysts with ultralow Pt loading. Structural characterizations with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Xray powder diffraction (XRD) reveal a novel nanoarchitecture with multimodal open porosity and excellent structural continuity and integrity. Cyclic voltammetry (CV) demonstrates that these Pt/Au PNTs possess very high electrocatalytic activity toward formic acid oxidation with enhanced tolerance to CO poisoning.  相似文献   

5.
The synthesis and structure of atomically precise Au130?xAgx (average x=98) alloy nanoclusters protected by 55 ligands of 4‐tert‐butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag‐rich sites is found, which is enclosed by a Marks decahedral cage of Au‐rich sites. The surface is exclusively Ag?SR; X‐ray absorption fine structure analysis supports the absence of Au?S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non‐plasmon nature. The non‐metallicity of the Au130?xAgx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic‐level insights into the Au?Ag bonds in bimetallic nanoclusters.  相似文献   

6.
Hierarchical Fe3O4@poly(4‐vinylpyridine‐co‐divinylbenzene)@Au (Fe3O4@P(4‐VP–DVB)@Au) nanostructures were fabricated successfully by means of a facile two‐step synthesis process. In this study, well‐defined core–shell Fe3O4@P(4‐VP–DVB) microspheres were first prepared with a simple polymerization method, in which 4‐VP was easily polymerized on the surface of Fe3O4 nanoparticles by means of strong hydrogen‐bond interactions between ? COOH groups on poly(acrylic acid)‐modified Fe3O4 nanoparticles and a 4‐VP monomer. HAuCl4 was adsorbed on the chains of a P(4‐VP) shell and then reduced to Au nanoparticles by NaBH4, which were embedded into the P(4‐VP) shell of the composite microspheres to finally form the Fe3O4@P(4‐VP–DVB)@Au nanostructures. The obtained Fe3O4@P(4‐VP–DVB)@Au catalysts with different Au loadings were applied in the reduction of 4‐nitrophenol (4‐NP) and exhibited excellent catalytic activity (up to 3025 h?1 of turnover frequency), facile magnetic separation (up to 31.9 emu g?1 of specific saturation magnetization), and good durability (over 98 % of conversion of 4‐NP after ten runs of recyclable catalysis and almost negligible leaching of Au).  相似文献   

7.
The synthesis of upconverting hydrogel nanocomposites by base‐catalyzed thiol‐ene click reaction between 10‐undecenoic acid capped Yb3+/Er3+‐doped NaYF4 nanoparticles and pentaerythritol tetrakis(3‐mercaptopropionate) (PETMP) as tetrathiol monomer is reported. This synthetic strategy for nanocomposite gels is quite different from works where usually the preformed gels are mixed with the nanoparticles. Developing nanocomposites by surface modification of capping ligands would allow tuning and controlling of the separation of the nanoparticles inside the gel network. The hydrogel nanocomposites prepared by thiol‐ene click reaction show strong enhancement in luminescence intensity compared to 10‐undecenoic acid‐capped Yb3+/Er3+‐doped NaYF4 nanoparticles through the upconversion process (under 980 nm laser excitation). The hydrogel nanocomposites display strong swelling characteristics in water resulting in porous structures. Interestingly, the resulting nanocomposite gels act as templates for the synthesis of dendrimer‐like Au nanostructures when HAuCl4 is reduced in the presence of the nanocomposite gels.  相似文献   

8.
Supported noble bimetallic nanomaterials have attracted great interest owing to their applications in catalysis. Herein, polystyrene‐supported Ag@AgAu bimetallic nanocomposites were synthesized by using a seed‐growth route. The size and degree of coverage of the Ag@AgAu NPs could be controlled by changing the experimental parameters. SEM, TEM, STEM, EDS, and XPS analysis was used to characterize the morphology, structure, and composition of these nanocomposites. We found that the bimetallic nanoparticles on the polystyrene beads had a core–shell structure that was comprised of a Ag core and a AgAu alloy shell. The optical properties of the nanocomposites were also studied by UV/Vis/NIR spectroscopy, which indicated that the localized surface plasmon resonance (LSPR) absorptions of the nanocomposites could be tailored over a large scale from 450 nm to 950 nm. The catalytic properties of the nanocomposites were studied by using the reduction of 4‐nitrophenol (4‐NP) by NaBH4 as a model system. The results showed that the catalytic activity of the polystyrene‐supported Ag@AgAu bimetallic nanocomposites was remarkably superior to that of polystyrene‐supported monometallic Ag and Au nanocomposites with the same nanoparticle size. In addition, an investigation of the recycling catalytic activity of the PS‐Ag@AgAu nanocomposites revealed that the catalyst possessed good stability. The enhancement of the catalytic activity was proposed to be due to the ligand and strain effects between Ag and Au.  相似文献   

9.
This paper describes the synthesis of Pd@MxCu1?x (M=Au, Pd, and Pt) nanocages with a yolk–shell structure through galvanic replacement reactions that involve Pd@Cu core–shell nanocubes as sacrificial templates and ethylene glycol as the solvent. Compared with the most commonly used templates based on Ag, Cu offers a much lower reduction potential (0.34 versus 0.80 V), making the galvanic reaction more easily to conduct, even at room temperature. Our structural and compositional characterizations indicated that the products were hollow inside, and each one of them contained porous M–Cu alloy walls and a Pd cube in the interior. For the Pd@AuxCu1?x yolk–shell nanocages, they displayed broad extinction peaks extending from the visible to the near‐IR region. Our mechanistic study revealed that the dissolution of the Cu shell preferred to start from the slightly truncated corners and then progressed toward the interior, because the Cu {100} side faces were protected by a surface capping layer of hexadecylamine. This galvanic approach can also be extended to generating other hollow metal nanostructures by using different combinations of Cu nanostructures and salt precursors.  相似文献   

10.
A facile method was used to prepare hollow mesoporous TiO2 and Au@TiO2 spheres using polystyrene (PS) templates. Au nanoparticles (NPs) were simultaneously synthesized and attached on the surface of PS spheres by reducing AuCl4? ions using sodium citrate which resulted in the uniform deposition of Au NPs. The outer coating of titania via sol‐gel produced PS@Au@TiO2 core–shell spheres. Removing the templates from these core–shell spheres through calcination produced hollow mesoporous and crystalline Au@TiO2 spheres with Au NPs inside the TiO2 shell in a single step. Anatase spheres with double Au NPs layers, one inside and another outside of TiO2 shell, were also prepared. Different characterization techniques indicated the hollow mesoporous and crystalline morphology of the prepared spheres with Au NPs. Hollow anatase spheres with Au NPs indicated enhanced harvesting of visible light and therefore demonstrated efficient catalytic activity toward the degradation of organic dyes under the irradiation of visible light as compared to bare TiO2 spheres.  相似文献   

11.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

12.
Poly(N‐vinyl‐2‐pyrolidone) protected Pt‐core bimetallic Pt/Au‐shell (Pt@Pt/Au) nanoparticles were prepared by multi‐step reduction of HAuCl4 and H2PtCl6 alternately by hydrogen adsorbed on platinum atom. Transmission electronic microscopy (TEM) and x‐ray diffraction (XRD) were used to characterize Pt@Pt/Au nanoparticles. The structure of the shell of the nanoparticles seems to be the Au‐Pt solid solution.  相似文献   

13.
Triple‐layered Ag@Co@Ni core–shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04@Co0.48@Ni0.48 showed the most distinct core–shell structure. Compared with its bimetallic core–shell counterparts, this catalyst showed higher catalytic activity for the hydrolysis of NH3BH3 (AB). The synergetic interaction between Co and Ni in Ag0.04@Co0.48@Ni0.48 NPs may play a critical role in the enhanced catalytic activity. Furthermore, cobalt–nickel double shells surrounding the silver core in the special triple‐layered core–shell structure provided increasing amounts of active sites on the surface to facilitate the catalytic reaction. These promising catalysts may lead to applications for AB in the field of fuel cells.  相似文献   

14.
We report the synthesis and gradient stimuli‐responsive properties of cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures. A ionic hyperbranched poly(β‐cyclodextrin) (β‐CD) core was firstly synthesized via a convenient “A2+B3” approach. Double‐layered shell architectures, composed of poly(N‐isopropyl acrylamide) (PNIPAm) and poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) miktoarms as the outermost shell linked to poly(N,N‐diethylaminoethyl methacrylate) (PDEAEMA) homoarms which form the inner shell, were obtained by a sequential atom transfer radical polymerization (ATRP) and parallel click chemistry from the modified hyperbranched poly(β‐CD) macroinitiator. The combined characterization by 1H NMR, 13C NMR, 1H‐29Si heteronuclear multiple‐bond correlation (HMBC), FTIR and size exclusion chromatography/multiangle laser light scattering (SEC/MALLS) confirms the remarkable hyperbranched poly(β‐CD) core and double‐shell miktoarm architectures. The gradient triple‐stimuli‐responsive properties of hyperbranched core‐double‐shell miktoarm architectures and the corresponding mechanisms were investigated by UV–vis spectrophotometer and dynamic light scattering (DLS). Results show that this polymer possesses three‐stage phase transition behaviors. The first‐stage phase transition comes from the deprotonation of PDEAEMA segments at pH 9–10 aqueous solution under room temperature. The confined coil‐globule conformation transition of PNIPAm and PDMAEMA arms gives rise to the second‐stage hysteretic cophase transition between 38 and 44 °C at pH 10. The third‐stage phase transition occurs above 44 °C at pH = 10 attributed to the confined secondary conformation transition of partial PDMAEMA segments. This cyclodextrin‐overhanging hyperbranched core‐double‐shell miktoarm architectures are expected to solve the problems of inadequate functionalities from core layer and lacking multiresponsiveness for shell layers existing in the dendritic core‐multishell architectures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A novel antimicrobial nanohybrid based on near‐infrared (NIR) photothermal conversion is designed for bacteria capture, separation, and sterilization (killing). Positively charged magnetic reduced graphene oxide with modification by polyethylenimine (rGO–Fe3O4–PEI) is prepared and then loaded with core–shell–shell Au–Ag–Au nanorods to construct the nanohybrid rGO–Fe3O4–Au–Ag–Au. NIR laser irradiation melts the outer Au shell and exposes the inner Ag shell, which facilitates controlled release of the silver shell. The nanohybrids combine physical photothermal sterilization as a result of the outer Au shell with the antibacterial effect of the inner Ag shell. In addition, the nanohybrid exhibits high heat conductivity because of the rGO and rapid magnetic‐separation capability that is attributable to Fe3O4. The nanohybrid provides a significant improvement of bactericidal efficiency with respect to bare Au–Ag–Au nanorods and facilitates the isolation of bacteria from sample matrixes. A concentration of 25 μg mL?1 of nanohybrid causes 100 % capture and separation of Escherichia coli O157:H7 (1×108 cfu mL?1) from an aqueous medium in 10 min. In addition, it causes a 22 °C temperature rise for the surrounding solution under NIR irradiation (785 nm, 50 mW cm?2) for 10 min. With magnetic separation, 30 μg mL?1 of nanohybrid results in a 100 % killing rate for E. coli O157:H7 cells. The facile bacteria separation and photothermal sterilization is potentially feasible for environmental and/or clinical treatment.  相似文献   

16.
A modified adaptive immune optimization algorithm (AIOA) is designed for optimization of Cu–Au and Ag–Au bimetallic clusters with Gupta potential. Compared with homoatom clusters, there are homotopic isomers in bimetallic cluster, so atom exchange operation is presented in the modified AIOA. The efficiency of the algorithm is tested by optimization of CunAu38‐n (0 ≤ n ≤ 38). Results show that all the structures with the putative global minimal energies are successfully located. In the optimization of AgnAu55‐n (0 ≤ n ≤ 55) bimetallic clusters, all the structures with the reported minimal energies are obtained, and 36 structures with even lower potential energies are found. On the other hand, with the optimized structures of CunAu55‐n, it is shown that all 55‐atom Cu–Au bimetallic clusters are Mackay icosahedra except for Au55, which is a face‐centered cubic (fcc)‐like structure; Cu55, Cu12Au43, and Cu1Au54 have two‐shell Mackay icosahedral geometries with Ih point group symmetry. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

17.
The rationale for the preparation of DNA‐templated gold nanoclusters (DNA‐Au NCs) has not been well understood, thereby slowing down the advancement of the synthesis and applications of DNA‐Au NCs. The interaction between metal ions and the DNA template seems to be the key factor for the successful preparation of DNA‐templated metal nanoclusters. With the help of circular dichroism in this contribution, we put efforts into interrogating the necessity of pre‐incubation of HAuCl4 with poly‐adenine template in the formation of Au NCs by citrate reduction. Our results revealed that the pre‐incubation of HAuCl4 with poly‐adenine is not favorable for the formation of Au NCs, which is distinctly different from the formation process for silver nanoclusters. It is our hope that this study can provide guidance in the preparation of Au NCs with more DNA templates.  相似文献   

18.
Electrochemical reduction of carbon dioxide (CO2) to CO is regarded as an efficient method to utilize the greenhouse gas CO2, because the CO product can be further converted into high value‐added chemicals via the Fisher–Tropsch process. Among all electrocatalysts used for CO2‐to‐CO reduction, Au‐based catalysts have been demonstrated to possess high selectivity, but their precious price limits their future large‐scale applications. Thus, simultaneously achieving high selectivity and reasonable price is of great importance for the development of Au‐based catalysts. Here, we report Ag@Au core–shell nanowires as electrocatalyst for CO2 reduction, in which a nanometer‐thick Au film is uniformly deposited on the core Ag nanowire. Importantly, the Ag@Au catalyst with a relative low Au content can drive CO generation with nearly 100 % Faraday efficiency in 0.1 m KCl electrolyte at an overpotential of ca. ?1.0 V. This high selectivity of CO2 reduction could be attributed to a suitable adsorption strength for the key intermediate on Au film together with the synergistic effects between the Au shell and Ag core and the strong interaction between CO2 and Cl? ions in the electrolyte, which may further pave the way for the development of high‐efficiency electrocatalysts for CO2 reduction.  相似文献   

19.
Facile strategy was developed for the fabrication of the monodisperse superparamagnetic pH‐sensitive single‐layer chitosan (CS) hollow microspheres with controllable structure. The carboxyl group‐functionalized polystyrene microspheres prepared by soap‐free emulsion polymerization were used as the templates. After the Fe3O4 nanoparticles were in situ formed onto the surface of the templates, the single‐layer CS was self‐assembled and cross‐linked with glutaraldehyde subsequently. Then, the magnetic single‐layer CS hollow microspheres were obtained after the templates were removed. It was found that the feeding ratio of the monomer acrylic acid in the soap‐free emulsion polymerization had played an important role on the particle size and surface carboxyl group content of the templates, which determined the particle size and shell thickness of the magnetic single‐layer CS hollow microspheres in the proposed strategy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Gold nanoparticle‐loaded rutile TiO2 with a bimodal size distribution around 10.6 nm and 2.3 nm (BM‐Au/TiO2) was prepared by the deposition precipitation and chemical reduction (DP‐CR) technique. Visible‐light irradiation (λ>430 nm) of the BM‐Au/TiO2 plasmonic photocatalyst yields 35 μm H2O2 in aerated pure water at irradiation time (tp)=1 h, and the H2O2 concentration increases to 640±60 μm by the addition of 4 % HCOOH as a sacrificing electron donor. Further, a carbonate‐modified surface BM‐Au/TiO2 (BM‐Au/TiO2‐CO32?) generates a millimolar level of H2O2 at tp=1 h with a quantum efficiency (Φ) of 5.4 % at λ=530 nm under the same conditions. The recycle experiments confirmed the stable performance of BM‐Au/TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号