首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
A (k,d)-list assignment L of a graph G is a mapping that assigns to each vertex v a list L(v) of at least k colors satisfying |L(x)L(y)|d for each edge xy. A graph G is (k,d)-choosable if there exists an L-coloring of G for every (k,d)-list assignment L. This concept is also known as choosability with separation. In this paper, we prove that any planar graph G is (3,1)-choosable if any i-cycle is not adjacent to a j-cycle, where 5i6 and 5j7.  相似文献   

2.
A graph G is (k,k)-choosable if the following holds: For any list assignment L which assigns to each vertex v a set L(v) of k real numbers, and assigns to each edge e a set L(e) of k real numbers, there is a total weighting ?:V(G)E(G)R such that ?(z)L(z) for zVE, and eE(u)?(e)+?(u)eE(v)?(e)+?(v) for every edge uv. This paper proves that if G is a connected graph of maximum degree Δ2, then G is (1,Δ+1)-choosable.  相似文献   

3.
An incidence of a graph G is a pair (u,e) where u is a vertex of G and e is an edge of G incident to u. Two incidences (u,e) and (v,f) of G are adjacent whenever (i) u=v, or (ii) e=f, or (iii) uv=e or uv=f. An incidencek-coloring of G is a mapping from the set of incidences of G to a set of k colors such that every two adjacent incidences receive distinct colors. The notion of incidence coloring has been introduced by Brualdi and Quinn Massey (1993) from a relation to strong edge coloring, and since then, has attracted a lot of attention by many authors.On a list version of incidence coloring, it was shown by Benmedjdoub et al. (2017) that every Hamiltonian cubic graph is incidence 6-choosable. In this paper, we show that every cubic (loopless) multigraph is incidence 6-choosable. As a direct consequence, it implies that the list strong chromatic index of a (2,3)-bipartite graph is at most 6, where a (2,3)-bipartite graph is a bipartite graph such that one partite set has maximum degree at most 2 and the other partite set has maximum degree at most 3.  相似文献   

4.
A star edge coloring of a graph is a proper edge coloring such that every connected 2-colored subgraph is a path with at most 3 edges. Deng et al. and Bezegová et al. independently show that the star chromatic index of a tree with maximum degree Δ is at most ?3Δ2?, which is tight. In this paper, we study the list star edge coloring of k-degenerate graphs. Let chst(G) be the list star chromatic index of G: the minimum s such that for every s-list assignment L for the edges, G has a star edge coloring from L. By introducing a stronger coloring, we show with a very concise proof that the upper bound on the star chromatic index of trees also holds for list star chromatic index of trees, i.e. chst(T)?3Δ2? for any tree T with maximum degree Δ. And then by applying some orientation technique we present two upper bounds for list star chromatic index of k-degenerate graphs.  相似文献   

5.
《Discrete Mathematics》2022,345(8):112903
Graphs considered in this paper are finite, undirected and loopless, but we allow multiple edges. The point partition number χt(G) is the least integer k for which G admits a coloring with k colors such that each color class induces a (t?1)-degenerate subgraph of G. So χ1 is the chromatic number and χ2 is the point arboricity. The point partition number χt with t1 was introduced by Lick and White. A graph G is called χt-critical if every proper subgraph H of G satisfies χt(H)<χt(G). In this paper we prove that if G is a χt-critical graph whose order satisfies |G|2χt(G)?2, then G can be obtained from two non-empty disjoint subgraphs G1 and G2 by adding t edges between any pair u,v of vertices with uV(G1) and vV(G2). Based on this result we establish the minimum number of edges possible in a χt-critical graph G of order n and with χt(G)=k, provided that n2k?1 and t is even. For t=1 the corresponding two results were obtained in 1963 by Tibor Gallai.  相似文献   

6.
《Discrete Mathematics》2022,345(2):112690
For a bipartite graph G with parts X and Y, an X-interval coloring is a proper edge coloring of G by integers such that the colors on the edges incident to any vertex in X form an interval. Denote by χint(G,X) the minimum k such that G has an X-interval coloring with k colors. Casselgren and Toft (2016) [12] asked whether there is a polynomial P(Δ) such that if G has maximum degree at most Δ, then χint(G,X)P(Δ). In this short note, we answer this question in the affirmative; in fact, we prove that a cubic polynomial suffices. We also deduce some improved upper bounds on χint(G,X) for bipartite graphs with small maximum degree.  相似文献   

7.
《Discrete Mathematics》2022,345(11):113058
Given an undirected graph G=(V,E), a conflict-free coloring with respect to open neighborhoods (CFON coloring) is a vertex coloring such that every vertex has a uniquely colored vertex in its open neighborhood. The minimum number of colors required for such a coloring is the CFON chromatic number of G, denoted by χON(G).In previous work [WG 2020], we showed the upper bound χON(G)dc(G)+3, where dc(G) denotes the distance to cluster parameter of G. In this paper, we obtain the improved upper bound of χON(G)dc(G)+1. We also exhibit a family of graphs for which χON(G)>dc(G), thereby demonstrating that our upper bound is tight.  相似文献   

8.
9.
10.
11.
An edge of a k-connected graph is said to be k-contractible if the contraction of the edge results in a k-connected graph. For a graph G and a vertex x of G, let G[NG(x)] be the subgraph induced by the neighborhood of x. We prove that if G[NG(x)] has less than ?k2? edges for any vertex x of a k-connected graph G, then G has a k-contractible edge. We also show that the bound ?k2? is sharp.  相似文献   

12.
Given a simple graph G=(VG,EG) with vertex set VG and edge set EG, the mixed graph G? is obtained from G by orienting some of its edges. Let H(G?) denote the Hermitian adjacency matrix of G? and A(G) be the adjacency matrix of G. The H-rank (resp. rank) of G? (resp. G), written as rk(G?) (resp. r(G)), is the rank of H(G?) (resp. A(G)). Denote by d(G) the dimension of cycle space of G, that is d(G)=|EG|?|VG|+ω(G), where ω(G) denotes the number of connected components of G. In this paper, we concentrate on the relation between the H-rank of G? and the rank of G. We first show that ?2d(G)?rk(G?)?r(G)?2d(G) for every mixed graph G?. Then we characterize all the mixed graphs that attain the above lower (resp. upper) bound. By these obtained results in the current paper, all the main results obtained in Luo et al. (2018); Wong et al. (2016) may be deduced consequently.  相似文献   

13.
《Discrete Mathematics》2020,343(12):112117
Let G be an edge-colored graph of order n. The minimum color degree of G, denoted by δc(G), is the largest integer k such that for every vertex v, there are at least k distinct colors on edges incident to v. We say that an edge-colored graph is rainbow if all its edges have different colors. In this paper, we consider vertex-disjoint rainbow triangles in edge-colored graphs. Li (2013) showed that if δc(G)(n+1)2, then G contains a rainbow triangle and the lower bound is tight. Motivated by this result, we prove that if n20 and δc(G)(n+2)2, then G contains two vertex-disjoint rainbow triangles. In particular, we conjecture that if δc(G)(n+k)2, then G contains k vertex-disjoint rainbow triangles. For any integer k2, we show that if n16k12 and δc(G)n2+k1, then G contains k vertex-disjoint rainbow triangles. Moreover, we provide sufficient conditions for the existence of k edge-disjoint rainbow triangles.  相似文献   

14.
15.
《Discrete Mathematics》2020,343(2):111679
A path in an edge-colored graph G is called monochromatic if any two edges on the path have the same color. For k2, an edge-colored graph G is said to be monochromatic k-edge-connected if every two distinct vertices of G are connected by at least k edge-disjoint monochromatic paths, and G is said to be uniformly monochromatic k-edge-connected if every two distinct vertices are connected by at least k edge-disjoint monochromatic paths such that all edges of these k paths are colored with a same color. We use mck(G) and umck(G) to denote the maximum number of colors that ensures G to be monochromatic k-edge-connected and, respectively, G to be uniformly monochromatic k-edge-connected. In this paper, we first conjecture that for any k-edge-connected graph G, mck(G)=e(G)e(H)+k2, where H is a minimum k-edge-connected spanning subgraph of G. We verify the conjecture for k=2. We also prove the conjecture for G=Kk+1 and G=Kk,n with nk3. When G is a minimal k-edge-connected graph, we give an upper bound of mck(G), i.e., mck(G)k1. For the uniformly monochromatic k-edge-connectivity, we prove that for all k, umck(G)=e(G)e(H)+1, where H is a minimum k-edge-connected spanning subgraph of G.  相似文献   

16.
《Discrete Mathematics》2020,343(10):111996
A Gallai coloring of a complete graph Kn is an edge coloring without triangles colored with three different colors. A sequence e1ek of positive integers is an (n,k)-sequence if i=1kei=n2. An (n,k)-sequence is a G-sequence if there is a Gallai coloring of Kn with k colors such that there are ei edges of color i for all i,1ik. Gyárfás, Pálvölgyi, Patkós and Wales proved that for any integer k3 there exists an integer g(k) such that every (n,k)-sequence is a G-sequence if and only if ng(k). They showed that g(3)=5,g(4)=8 and 2k2g(k)8k2+1.We show that g(5)=10 and give almost matching lower and upper bounds for g(k) by showing that with suitable constants α,β>0, αk1.5lnkg(k)βk1.5 for all sufficiently large k.  相似文献   

17.
For a graph G=(V,E), the k-dominating graph Dk(G) of G has vertices corresponding to the dominating sets of G having cardinality at most k, where two vertices of Dk(G) are adjacent if and only if the dominating set corresponding to one of the vertices can be obtained from the dominating set corresponding to the second vertex by the addition or deletion of a single vertex. We denote the domination and upper domination numbers of G by γ(G) and Γ(G), respectively, and the smallest integer ε for which Dk(G) is connected for all kε by d0(G). It is known that Γ(G)+1d0(G)|V|, but constructing a graph G such that d0(G)>Γ(G)+1 appears to be difficult.We present two related constructions. The first construction shows that for each integer k3 and each integer r such that 1rk?1, there exists a graph Gk,r such that Γ(Gk,r)=k, γ(Gk,r)=r+1 and d0(Gk,r)=k+r=Γ(G)+γ(G)?1. The second construction shows that for each integer k3 and each integer r such that 1rk?1, there exists a graph Qk,r such that Γ(Qk,r)=k, γ(Qk,r)=r and d0(Qk,r)=k+r=Γ(G)+γ(G).  相似文献   

18.
19.
20.
《Discrete Mathematics》2020,343(6):111712
The weak r-coloring numbers wcolr(G) of a graph G were introduced by the first two authors as a generalization of the usual coloring number col(G), and have since found interesting theoretical and algorithmic applications. This has motivated researchers to establish strong bounds on these parameters for various classes of graphs.Let Gp denote the pth power of G. We show that, all integers p>0 and Δ3 and graphs G with Δ(G)Δ satisfy col(Gp)O(pwcolp2(G)(Δ1)p2); for fixed tree width or fixed genus the ratio between this upper bound and worst case lower bounds is polynomial in p. For the square of graphs G, we also show that, if the maximum average degree 2k2<mad(G)2k, then col(G2)(2k1)Δ(G)+2k+1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号