首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Interpenetration in metal–organic frameworks (MOFs) is an intriguing phenomenon with significant impacts on their properties, and functional applications. Herein, we show that a 7-fold interpenetrated MOF ( 1 ) is transformed into an 8-fold interpenetrated MOF by the loss of DMF in a single-crystal-to-single-crystal manner. This is accompanied by a giant enhancement of the second harmonic generation (SHG ca. 125 times) and two-photon photoluminescence (ca. 14 times). The strengthened π–π interaction between the individual diamondoid networks and intensified oscillator strength of the molecules aid the augment of dipole moments and boost the nonlinear optical conversion efficiency. Large positive and negative thermal expansions of 1 occur at 30–150 °C before the loss of DMF. These results offer an avenue to manipulate the NLO properties of MOFs using interpenetration and provide access to tunable single-crystal NLO devices.  相似文献   

2.
The long‐persistent phosphorescent metal–organic framework (MOF) is a kind of highly desirable but rare material. Here, two new molecular MOF materials, {[Zn(tipa)Cl] ? NO3 ? 2 DMF}n ( 1 ) and {[Cd2(tipa)2Cl4] ? 6 DMF}n ( 2 ) (tipa=tri(4‐imidazolylphenyl)amine), which have 3D twofold interpenetrated ( utp ) and 2D noninterpenetrated ( kgd ) topologies, respectively, are reported. They exhibit unexpected long‐persistent emissions yet reported: At 77 K, they persist in glowing after stopping the UV irradiation on a timescale up to seconds at 77 K, which can be detected by the naked eye (ca. 2 s). Compounds 1 and 2 also undergo single‐crystal‐to‐single‐crystal (SC‐SC) transformations through different routes; a simple anion‐exchange route for 1 and a complicated replacement of μ1‐Cl? ions by DMF molecules accompanying I3? captured in the void for 2 .  相似文献   

3.
Metal–organic frameworks (MOFs), as a class of microporous materials with well‐defined channels and rich functionalities, hold great promise for various applications. Yet the formation and crystallization processes of various MOFs with distinct topology, connectivity, and properties remain largely unclear, and the control of such processes is rather challenging. Starting from a 0D Cu coordination polyhedron, MOP‐1, we successfully unfolded it to give a new 1D‐MOF by a single‐crystal‐to‐single‐crystal (SCSC) transformation process at room temperature as confirmed by SXRD. We also monitored the continuous transformation states by FTIR and PXRD. Cu MOFs with 2D and 3D networks were also obtained from this 1D‐MOF by SCSC transformations. Furthermore, Cu MOFs with 0D, 1D, and 3D networks, MOP‐1, 1D‐MOF, and HKUST‐1, show unique performances in the kinetics of the C?H bond catalytic oxidation reaction.  相似文献   

4.
A new tetracarboxylate ligand having short and long arms formed 2D layer ZnII coordination polymer 1 with paddle‐wheel secondary building units under solvothermal conditions. The framework undergoes solvent‐specific single crystal‐to‐single crystal (SC‐SC) transmetalation to produce 1Cu . With a sterically encumbered dipyridyl linker, the same ligand forms non‐interpenetrated, 3D, pillared‐layer ZnII metal–organic framework (MOF) 2 , which takes part in SC‐SC linker‐exchange reactions to produce three daughter frameworks. The parent MOF 2 shows preferential incorporation of the longest linker in competitive linker‐exchange experiments. All the 3D MOFs undergo complete SC‐SC transmetalation with CuII, whereby metal exchange in different solvents and monitoring of X‐ray structures revealed that bulky solvated metal ions lead to ordering of the shortest linker in the framework, which confirms that the solvated metal ions enter through the pores along the linker axis.  相似文献   

5.
Metal–organic framework materials (MOFs) have recently been shown in some cases to exhibit strong negative thermal expansion (NTE) behavior, while framework interpenetration has been found to reduce NTE in many materials. Using powder and single‐crystal diffraction methods we investigate the thermal expansion behavior of interpenetrated Cu3(btb)2 (MOF‐14) and find that it exhibits an anomalously large NTE effect. Temperature‐dependent structural analysis shows that, contrary to other interpenetrated materials, in MOF‐14 the large positive thermal expansion of weak interactions that hold the interpenetrating networks together results in a low‐energy contractive distortion of the overall framework structure, demonstrating a new mechanism for NTE.  相似文献   

6.
Metal–organic frameworks (MOFs) containing ZrIV‐based secondary building units (SBUs), as in the UiO‐66 series, are receiving widespread research interest due to their enhanced chemical and mechanical stabilities. We report the synthesis and extensive characterisation, as both bulk microcrystalline and single crystal forms, of extended UiO‐66 (Zr and Hf) series MOFs containing integral unsaturated alkene, alkyne and butadiyne units, which serve as reactive sites for postsynthetic modification (PSM) by halogenation. The water stability of a Zr–stilbene MOF allows the dual insertion of both ?OH and ?Br groups in a single, aqueous bromohydrination step. Quantitative bromination of alkyne‐ and butadiyne‐containing MOFs is demonstrated to be stereoselective, as a consequence of the linker geometry when bound in the MOFs, while the inherent change in hybridisation and geometry of integral linker atoms is facilitated by the high mechanical stabilities of the MOFs, allowing bromination to be characterised in a single‐crystal to single‐crystal (SCSC) manner. The facile addition of bromine across the unsaturated C?C bonds in the MOFs in solution is extended to irreversible iodine sequestration in the vapour phase. A large‐pore interpenetrated Zr MOF demonstrates an I2 storage capacity of 279 % w/w, through a combination of chemisorption and physisorption, which is comparable to the highest reported capacities of benchmark iodine storage materials for radioactive I2 sequestration. We expect this facile PSM process to not only allow trapping of toxic vapours, but also modulate the mechanical properties of the MOFs.  相似文献   

7.
Arrays of ultrasmall and uniform carbon nanodots (CDs) are of pronounced interest for applications in optical devices. Herein, we describe a low‐temperature calcination approach with rather inexpensive reactants. After glucose molecules had been loaded into the pores of metal–organic frameworks (MOFs), well‐defined CD arrays were produced by heating to 200 °C. The size and spacing of the CDs could be controlled by the choice of templating MOF: HKUST‐1, ZIF‐8, or MIL‐101. The sizes of the obtained CDs were approximately 1.5, 2.0, and 3.2 nm, which are close to the corresponding MOF pores sizes. The CD arrays exhibited interesting photophysical properties, including photoluminescence with tunable emission and pronounced nonlinear optical (NLO) effects. The NLO properties of the obtained CD arrays were significantly different from those of a CD suspension, thus indicating the existence of collective phenomena.  相似文献   

8.
A UiO‐66‐NCS MOF was formed by postsynthetic modification of UiO‐66‐NH2. The UiO‐66‐NCS MOFs displays a circa 20‐fold increase in activity against the chemical warfare agent simulant dimethyl‐4‐nitrophenyl phosphate (DMNP) compared to UiO‐66‐NH2, making it the most active MOF materials using a validated high‐throughput screening. The ?NCS functional groups provide reactive handles for postsynthetic polymerization of the MOFs into functional materials. These MOFs can be tethered to amine‐terminated polypropylene polymers (Jeffamines) through a facile room‐temperature synthesis with no byproducts. The MOFs are then crosslinked into a MOF–polythiourea (MOF–PTU) composite material, maintaining the catalytic properties of the MOF and the flexibility of the polymer. This MOF–PTU hybrid material was spray‐coated onto Nyco textile fibers, displaying excellent adhesion to the fiber surface. The spray‐coated fibers were screened for the degradation of DMNP and showed durable catalytic reactivity.  相似文献   

9.
Getting suitable crystals for single‐crystal X‐ray crystallographic analysis still remains an art. Obtaining single crystals of metal–organic frameworks (MOFs) containing organic polymers poses even greater challenges. Here we demonstrate the formation of a syndiotactic organic polymer ligand inside a MOF by quantitative [2+2] photopolymerization reaction in a single‐crystal‐to‐single‐crystal manner. The spacer ligands with trans,trans,trans‐conformation in the pillared‐layer MOF with guest water molecules in the channels, undergo pedal motion to trans,cis,trans‐conformation prior to [2+2] photo‐cycloaddition reaction and yield single crystals of MOF containing two‐dimensional coordination polymers fused with the organic polymer ligands. We also show that the organic polymer in the single crystals can be depolymerized reversibly by cleaving the cyclobutane rings upon heating. These MOFs also show interesting photoluminescent properties and sensing of small organic molecules.  相似文献   

10.
The first example of an interpenetrated methyl‐modified MOF‐5 with the formula Zn4O(DMBDC)3(DMF)2, where DMBDC2? is 2,5‐dimethylbenzene‐1,4‐dicarboxylate and DMF is N,N‐dimethylformamide (henceforth denoted as Me2MOF‐5‐int ), namely, poly[tris(μ4‐2,5‐dimethylbenzene‐1,4‐dicarboxylato)bis(N,N‐dimethylformamide)‐μ4‐oxido‐tetrazinc(II)], [Zn4(C10H8O4)3O(C3H7NO)2]n, has been obtained from a solvothermal synthesis of 2,5‐dimethylbenzene‐1,4‐dicarboxylic acid and Zn(NO3)2·6H2O in DMF. A systematic study revealed that the choice of solvent is of critical importance for the synthesis of phase‐pure Me2MOF‐5‐int , which was thoroughly characterized by single‐crystal and powder X‐ray diffraction (PXRD), as well as by gas‐adsorption analyses. The Brunauer–Emmett–Teller surface area of Me2MOF‐5‐int (660 m2 g?1), determined by N2 adsorption, is much lower than that of nonpenetrated Me2MOF‐5 (2420 m2 g?1). However, Me2MOF‐5‐int displays an H2 uptake capacity of 1.26 wt% at 77 K and 1.0 bar, which is comparable to that of non‐interpenetrated Me2MOF‐5 (1.51 wt%).  相似文献   

11.
In metal–organic framework (MOF) chemistry, interpenetration greatly affects the gas‐sorption properties. However, there is a lack of a systematic study on how to control the interpenetration and whether the interpenetration enhances gas uptake capacities or not. Herein, we report an example of interpenetration that is simply controlled by the presence of a carbon–carbon double or single bond in identical organic building blocks, and provide a comparison of gas‐sorption properties for these similar frameworks, which differ only in their degree of interpenetration. Noninterpenetrated ( SNU‐70 ) and doubly interpenetrated ( SNU‐71 ) cubic nets were prepared by a solvothermal reaction of [Zn(NO3)2] ? 6 H2O in N,N‐diethylformamide (DEF) with 4‐(2‐carboxyvinyl)benzoic acid and 4‐(2‐carboxyethyl)benzoic acid, respectively. They have almost‐identical structures, but the noninterpenetrated framework has a much bigger pore size (ca. 9.0×9.0 Å) than the interpenetrated framework (ca. 2.5×2.5 Å). Activation of the MOFs by using supercritical CO2 gave SNU‐70′ and SNU‐71′ . The simulation of the PXRD pattern of SNU‐71′ indicates the rearrangement of the interpenetrated networks on guest removal, which increases pore size. SNU‐70′ has a Brunauer–Emmett–Teller (BET) surface area of 5290 m2 g?1, which is the highest value reported to date for a MOF with a cubic‐net structure, whereas SNU‐71′ has a BET surface area of 1770 m2 g?1. In general, noninterpenetrated SNU‐70′ exhibits much higher gas‐adsorption capacities than interpenetrated SNU‐71′ at high pressures, regardless of the temperature. However, at P<1 atm, the gas‐adsorption capacities for N2 at 77 K and CO2 at 195 K are higher for noninterpenetrated SNU‐70′ than for interpenetrated SNU‐71′ , but the capacities for H2 and CH4 are the opposite; SNU‐71′ has higher uptake capacities than SNU‐70′ due to the higher isosteric heat of gas adsorption that results from the smaller pores. In particular, SNU‐70′ has exceptionally high H2 and CO2 uptake capacities. By using a post‐synthetic method, the C?C double bond in SNU‐70 was quantitatively brominated at room temperature, and the MOF still showed very high porosity (BET surface area of 2285 m2 g?1).  相似文献   

12.
Conformational changes of linker units in metal‐organic frameworks (MOFs) are often responsible for gate‐opening phenomena in selective gas adsorption and stimuli‐responsive optical and electrical sensing behaviour. Herein, we show that pressure‐induced bathochromic shifts in both fluorescence emission and UV/Vis absorption spectra of a two‐fold interpenetrated Hf MOF, linked by 1,4‐phenylene‐bis(4‐ethynylbenzoate) ligands ( Hf‐peb ), are induced by rotation of the central phenyl ring of the linker, from a coplanar arrangement to a twisted, previously unseen conformer. Single‐crystal X‐ray diffraction, alongside in situ fluorescence and UV/Vis absorption spectroscopies, measured up to 2.1 GPa in a diamond anvil cell on single crystals, are in excellent agreement, correlating linker rotation with modulation of emission. Topologically isolating the 1,4‐phenylene‐bis(4‐ethynylbenzoate) units within a MOF facilitates concurrent structural and spectroscopic studies in the absence of intermolecular perturbation, allowing characterisation of the luminescence properties of a high‐energy, twisted conformation of the previously well‐studied chromophore. We expect the unique environment provided by network solids, and the capability of combining crystallographic and spectroscopic analysis, will greatly enhance understanding of luminescent molecules and lead to the development of novel sensors and adsorbents.  相似文献   

13.
Modular optimization of metal–organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO2 with high efficiency under visible‐light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron–hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long‐lived electrons for the reduction of CO2 molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO2, which is equivalent to a 3.13‐fold improvement in CO evolution rate (200.6 μmol g?1 h?1) and a 5.93‐fold enhancement in CH4 generation rate (36.67 μmol g?1 h?1) compared to the parent MOF.  相似文献   

14.
Two metal–organic frameworks (MOFs) with Zr–oxo secondary building units (SBUs) were prepared by using p,p′‐terphenyldicarboxylate (TPDC) bridging ligands pre‐functionalized with orthogonal succinic acid (MOF‐ 1 ) and maleic acid groups (MOF‐ 2 ). Single‐crystal X‐ray structure analysis of MOF‐ 1 provides the first direct evidence for eight‐connected SBUs in UiO‐type MOFs. In contrast, MOF‐ 2 contains twelve‐connected SBUs as seen in the traditional UiO MOF topology. These structural assignments were confirmed by extended X‐ray absorption fine structure (EXAFS) analysis. The highly porous MOF‐ 1 is an excellent fluorescence sensor for metal ions with the detection limit of <0.5 ppb for Mn2+and three to four orders of magnitude greater sensitivity for metal ions than previously reported luminescent MOFs.  相似文献   

15.
Hollow metal–organic frameworks (MOFs) are promising materials with sophisticated structures, such as multiple shells, that cannot only enhance the properties of MOFs but also endow them with new functions. Herein, we show a rational strategy to fabricate multi‐shelled hollow chromium (III) terephthalate MOFs (MIL‐101) with single‐crystalline shells through step‐by‐step crystal growth and subsequent etching processes. This strategy relies on the creation of inhomogeneous MOF crystals in which the outer layer is chemically more robust than the inner layer and can be selectively etched by acetic acid. The regulation of MOF nucleation and crystallization allows the tailoring of the cavity size and shell thickness of each layer. The resultant multi‐shelled hollow MIL‐101 crystals show significantly enhanced catalytic activity during styrene oxidation. The insight gained from this systematic study will aid in the rational design and synthesis of other multi‐shelled hollow structures and the further expansion of their applications.  相似文献   

16.
Assembly of small clusters into rigid bodies with precise shape and symmetry has been witnessed by the significant advances in cluster‐based metal–organic frameworks (MOFs), however, nanosized silver cluster based MOFs remain largely unexplored. Herein, two anion‐templated silver clusters, CO3@Ag20 and SO4@Ag22, were ingeniously incorporated into a 2D sql lattice ( 1 , [CO3@Ag20(iPrS)10(NO3)8(DMF)2]n) and an unprecedented 3D two‐fold interpenetrated dia network ( 2 , [SO4@Ag22(iPrS)12(NO3)6 ? 2 NO3]n), respectively, under mild solvothermal conditions. Their atomically precise structures were confirmed by single‐crystal X‐ray diffraction analysis and further consolidated by IR spectroscopy, thermogravimetric analysis (TGA), and elemental analysis. Each drum‐like CO3@Ag20 cluster is extended by twelve NO3? ions to form the 2D sql lattice of 1 , whereas each ball‐shaped SO4@Ag22 cluster with a twisted truncated tetrahedral geometry is pillared by four [Ag6(NO3)3] triangular prisms to form the 3D interpenetrated dia network of 2 . Notably, 2 is the first interpenetrated 3D MOF constructed from silver clusters. These results demonstrate the dual role of the anions, which not only internally act as anion templates to induce the formation of silver thiolate clusters but also externally extend the cluster units into the rigid networks. The photoluminescent and electrochemical properties of 2 are discussed in detail.  相似文献   

17.
Finding appropriate stimuli for controlling the breathing behavior of flexible metal–organic frameworks (MOFs) is highly challenging. Herein, we report the solvent‐induced changes in the particle size and stability of different breathing phases of the MIL‐53 series, a group of flexible MOFs. A water/dimethylformamide (DMF) ratio is tuned to synthesize members of the MIL‐53 series which have different behaviors. The breathing is explored by high‐pressure methane sorption tests. Increasing DMF concentration decreases MOF particle size and increases the stability of the porous phases, boosting the 5.8–65 bar sorption difference of methane, which is required for natural‐gas delivery.  相似文献   

18.
A GdIII‐based porous metal–organic framework (MOF), Gd‐pDBI, has been synthesized using fluorescent linker pDBI (pDBI=(1,4‐bis(5‐carboxy‐1H‐benzimidazole‐2‐yl)benzene)), resulting in a three‐dimensional interpenetrated structure with a one‐dimensional open channel (1.9×1.2 nm) filled with hydrogen‐bonded water assemblies. Gd‐pDBI exhibits high thermal stability, porosity, excellent water stability, along with organic‐solvent and mild acid and base stability with retention of crystallinity. Gd‐pDBI was transformed to the nanoscale regime (ca. 140 nm) by mechanical grinding to yield MG‐Gd‐pDBI with excellent water dispersibility (>90 min), maintaining its porosity and crystallinity. In vitro and in vivo studies on MG‐Gd‐pDBI revealed its low blood toxicity and highest drug loading (12 wt %) of anticancer drug doxorubicin in MOFs reported to date with pH‐responsive cancer‐cell‐specific drug release.  相似文献   

19.
The structural, compositional, and morphological features of metal–organic frameworks (MOFs) govern their properties and applications. Construction of hybrid MOFs with complicated structures, components, or morphologies is significant for the development of well‐organized MOFs. An advanced route is reported for construction of atypical hybrid MOFs with unique morphologies and complicated components: 1) MOF‐on‐MOF growth of a 3D zeolitic imidazolate framework (ZIF) on a ZIF‐L template, 2) etching of a part of the 2D ZIF‐L template, and 3) structural transformation of 2D ZIF‐L into 3D ZIF. The formation of core–shell‐type MOF rings and plates is controlled by regulating the three processes. The formation route for the core–shell‐type MOF rings and plates was monitored by tracking changes in morphology, structure, and composition. Carbon materials prepared from the pyrolysis of the core–shell‐type hybrid MOFs displayed enhanced oxygen reduction reaction activities compared to their monomeric counterparts.  相似文献   

20.
An understanding of solid‐state crystal dynamics or flexibility in metal–organic frameworks (MOFs) showing multiple structural changes is highly demanding for the design of materials with potential applications in sensing and recognition. However, entangled MOFs showing such flexible behavior pose a great challenge in terms of extracting information on their dynamics because of their poor single‐crystallinity. In this article, detailed experimental studies on a twofold entangled MOF ( f‐MOF‐1) are reported, which unveil its structural response toward external stimuli such as temperature, pressure, and guest molecules. The crystallographic study shows multiple structural changes in f‐MOF‐1 , by which the 3 D net deforms and slides upon guest removal. Two distinct desolvated phases, that is, f‐MOF‐1 a and f‐MOF‐1 b , could be isolated; the former is a metastable one and transformable to the latter phase upon heating. The two phases show different gated CO2 adsorption profiles. DFT‐based calculations provide an insight into the selective and gated adsorption behavior with CO2 of f‐MOF‐1 b . The gate‐opening threshold pressure of CO2 adsorption can be tuned strategically by changing the chemical functionality of the linker from ethanylene (?CH2?CH2?) in f‐MOF‐1 to an azo (?N=N?) functionality in an analogous MOF, f‐MOF‐2 . The modulation of functionality has an indirect influence on the gate‐opening pressure owing to the difference in inter‐net interaction. The framework of f‐MOF‐1 is highly responsive toward CO2 gas molecules, and these results are supported by DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号