首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new diarylethene with ethylimidazo[2,1-b]thiazole-6-hydrazide unit was synthesized, and its photochromic and fluorescent behaviors have been systematically investigated by the stimulation of lights and metal ions in methanol. This new diarylethene exhibited high selectivity and sensitivity toward Al3+ and Zn2+. The addition of Al3+ and Zn2+ displayed excellent colorimetric response behaviour with the concomitant color change from colorless to yellow, which could be easily observed by the naked eye. Upon addition of Al3+, the fluorescence intensity was enhanced by 180–fold and the emission peak of 1O–Al3+ blue-shifted by 15?nm accompanied with a color change from colorless to bright blue. In contrast, when stimulated with Zn2+, its fluorescence intensity was enhanced by 35–fold and the emission peak of 1O–Zn2+ red-shifted by 16?nm with an evident color change from black to bright green. The LOD for Al3+ and Zn2+ were determined to be 2.97?×?10?9?mol?L?1 and 5.98?×?10?9?mol?L?1, respectively. Moreover, a logic circuit was constructed with the fluorescence intensity as the output signal responding to the light and chemical species as the inputs.  相似文献   

2.
A new diarylethene compound with a triazole-linked rhodamine 6G unit attached to the imino group (1O) was designed and synthesized. According to the test results, the solution color and fluorescence color of diarylethene can be modulated by lights and metal ions. The solution color could change from colorless to light purple when irradiated with UV light. When Cu2+ was added to the diarylethene solution, the color of diarylethene solution became blue, the fluorescence color turned from dark to bright yellow. Although the solution color did not change by adding Fe3+, its fluorescence color varied from dark to yellow. Moreover, it was found that the complex ratio of the diarylethene to Cu2+ was 1:1 and the binding stoichiometry of the diarylethene to Fe3+ was also 1:1 based on the data of NMR, MS, and other experiments. Based on these findings, photochromic figure of the diarylethene with UV/Vis light, Cu2+ and Fe3+ was constructed. Furthermore, the logic circuit was designed by input signals (ultraviolet stimulus, visible light stimulus, Cu2+ (or Fe3+) and EDTA) and an output signal (fluorescent intensity at 566?nm (or 575?nm)).  相似文献   

3.
A new fluorescent probe (TPIP) bearing triarylimidazole and pyridine moieties was synthesized and applied to the detection of Cu2+ with high sensitivity and selectivity. Upon the addition of Cu2+, the probe displayed an apparent dual-channel signal change of the UV–Vis absorption and fluorescence spectra, and the obvious color change from bright blue to colorless under a UV lamp was discernable to the naked eye. The sensing mechanism of the probe towards Cu2+ was verified to be via complexation, and the binding reaction was rapidly complete within 30?s. Good linearity was observed between the probe and Cu2+, and the detection limit was calculated to be 1.96?×?10?8?M. The reversibility of the probe was easily achieved by adding EDTA, which released the free probe with over 95% fluorescence recovery. Furthermore, the recognition of Cu2+ on TLC plates was realized, indicating the potential utility of the probe.  相似文献   

4.
A new multifunctional chemosensor 1 was synthesized and characterized by spectroscopic tools along with a single crystal X-ray crystallography. It can exhibit selective recognition responses toward Cu2+, Zn2+ and Al3+ in different solvent systems with bimodal methods (colorimetric and fluorescence). This sensor 1 detected Cu2+ ions through a distinct color change from colorless to yellow in aqueous solution. Interestingly, the receptor 1 was found to be reversible by EDTA. The detection limit (11 μM) of 1 for Cu2+ is much lower than WHO guideline (30 μM) in drinking water. In addition, the sensor 1 showed significant fluorescence enhancements in the presence of Zn2+ ion and Al3+ ion in two different organic solvents (DMF and MeCN), respectively. The binding modes of the three complexes were determined to be a 1:1 complexation stoichiometry through Job plot, ESI-mass spectrometry analysis, and 1H NMR titration.  相似文献   

5.
《Tetrahedron letters》2019,60(33):150945
A novel ratiometric probe (L) which was composed of chromone and coumarin moieties has been designed and synthesized for sensing Al3+ in EtOH in view of the internal charge transfer (ICT) mechanism. The free probe L exhibited a strong fluorescence emission at 477 nm, and the fluorescence emission here almost disappeared after adding Al3+ (10 equiv.) while a new peak appeared at 524 nm. This may be due to the enhancement of intramolecular electron transfer efficiency from donor to acceptor. In addition, this probe L could be form a 1:1 complex with Al3+, which could be explained by the ESI-MS spectra, and L had a low detection limit for Al3+ with a binding constant of 1.32 × 104 M−1. More importantly, L could be applied to a solid probe for rapid detection of Al3+ with a significant color change.  相似文献   

6.
A rhodamine derivative (1) was synthesized as a fluorescence turn-on probe for copper (Cu2+) and hypochlorite (ClO?). The probe gave a fluorescence turn-on change at 587 nm with a color change from colorless to pink in the presence of Cu2+ or ClO? ions in aqueous solution. It was found that the Cu2+ ion bound to 1 in a 1:1 stoichiometry and induced a spirolactam ring opening of the rhodamine moiety leading to a fluorescence turn-on, confirmed by Job’s plot, ESI-Mass, and 1H NMR analyses. In the presence of ClO? ion, probe 1 underwent a hypochlorite-mediated oxidation and hydrolysis to produce a ring-opened rhodamine B with a fluorescence enhancement. However, these changes were not monitored in case of other metal ions, anions, and reactive redox species. In addition, probe 1 can readily react with the ClO? to provide a distinct fluorescence enhancement along with a pink color even in the presence of various competitive species.  相似文献   

7.
A novel fluorescent chemosensor, (E)-7-(diethylamino)-3-((2-phenylimidazo[1,2-a]pyridin-3-ylimino)methyl)-2H-chromen-2-one 1a, has been synthesised and characterised. This chemosensor displayed an extreme selective fluorescence emission only with Cu2+ ion over all other metal ions examined. The Job’s plot experiment analysis suggested the binding ratio of the chemosensor 1a with Cu2+ was 1:1 metal-to-ligand ratio. The association constant for Cu2+ towards receptor 1a obtained from Benesi–Hildebrand plot was found to be 4.859 × 103 M?1 with a detection limit 4.6 × 10?8 M. Fluorescence enhancement caused by Cu2+ binding with chemosensor 1a attributed to combinational effect of intramolecular charge transfer and chelation-enhanced fluorescence occurred at pH 8.0.  相似文献   

8.
A novel thiazole-based Schiffbase chemosensor SB1 with N- and O- donor atoms was synthesized and characterized by different techniques (UV–vis, 13C NMR, 1H NMR, and FT-IR analysis). The chemosensor SB1 was used for the determination of Cu2+ ions in various samples. The significant spectral changes in absorption spectra of chemosensor SB1 at 220 and 416 nm and the color change from light yellow to yellowish-brown indicate high selectivity and sensitivity towards Cu2+ ions as compared to other cations (Na+, K+, Ag+, Zn2+, Ni2+, Pb2+, Mn2+, Mg2+, Co2+, Cd2+, Sn2+, Hg2+, Cr3+, Fe3+, and Al3+). The sensing mechanism of SB1 was investigated through various techniques such as FT-IR, UV–vis and 1H NMR titration experiment and further confirmed by DFT computational studies. The 2:1 binding mode between SB1 and Cu2+ ions was confirmed by Job‘s plot using UV–vis spectrophotometry. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.015 and 0.0471 µg mL?1, respectively. The percent recovery of Cu2+ from various environmental samples was found to be 95.00–103.33% at various levels. These obtained results demonstrate that chemosensor SB1 is a cost-effective, facile, selective, sensitive, and colorimetric sensing platform to detect trace amounts of Cu2+ ions in variousenvironmental and agricultural samples.  相似文献   

9.
In this study, we have successfully synthesized a novel coumarin-based dendrons derivative CD and its chemical structure was characterized by 1H NMR, 13C NMR and ESI-HR-MS. The sensor CD showed an obvious “on-off” fluorescence quenching response toward Cu2+ with a maximum quenching efficiency of 99.8%. The CD-Cu2+ complex showed an “off-on” fluorescence enhancement response toward PPi over many competitive anions. The detection limit of the sensor CD was 0.29?×?10?6?M to Cu2+ and 2.39?×?10?9?M to PPi. In addition, the sensor CD showed a 1:1 binding stoichiometry to Cu2+ and the sensor CD-Cu2+ showed a 2:1 binding stoichiometry to PPi in CH3CN/HEPES buffer medium (9:1 v/v, pH?=?7.2). The stable pH range of sensor CD to Cu2+ and CD-Cu2+ to PPi was from 3 to 8.  相似文献   

10.
We developed a simple Cu2+-selective turn-on fluorescence signaling probe based on the hydrolysis of 1-pyrenecarbohydrazide (1) to 1-pyrenecarboxylic acid. Probe 1 exhibited prominent fluorescence signaling of Cu2+ ions in a 10% aqueous Tris-buffered (pH 7.0) DMSO solution with a detection limit of 5.93 × 10?8 M. Signaling with control compounds derived from pyreneacetic acid and pyrenebutyric acid showed that the fluorescence signal became less pronounced as the distance between the hydrazide functionality and the pyrene fluorophore increased. As a practical application, this probe was employed for the determination of Cu2+ in a simulated semiconductor wastewater.  相似文献   

11.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

12.
In this study, we have successfully synthesized a new coumarin based fluorescent chemosensor 1, in which tren and quinolone are introduced as receptors for sequential recognition of Cu2+ and PPi. The structure of chemosensor 1 was characterized by 1H NMR, 13C NMR and ESI-HR-MS. Sensor 1 showed an obvious “on-off” fluorescence quenching response toward Cu2+, and the quenching efficiency reached a maximum of 99.6% with the addition of 20 equiv. of Cu2+. The 1-Cu2+ complex showed an “off-on” fluorescence enhancement response toward PPi over many competitive anions, especially HPO42? and H2PO4?. The detection limit of sensor 1 was 1.9?×?10?6?M to Cu2+ and 5.96?×?10?8?M to PPi. In addition, sensor 1 showed a 1:1 binding stoichiometry to Cu2+ and sensor 1-Cu2+ showed a 2: 1 binding stoichiometry to PPi in CH3CN/HEPES buffer medium (9:1 v/v, pH?=?7.4). The stable pH range of sensor 1 to Cu2+ and 1-Cu2+ to PPi was from 4 to 8.  相似文献   

13.
《Tetrahedron letters》2014,55(30):4062-4066
A fluorescent chemosensor 1 was synthesized containing a coumarin moiety bound to rhodamine B hydrazide. Compound 1 displayed different fluorescence emission responses to Al3+ and Ca2+ ions with high quantum yields (0.64 and 0.15, respectively) and low detection limits (3.0 × 10–8 and 9.4 × 10–8 M, respectively). The possible binding modes of compound 1 with Al3+ and Ca2+ ion were calculated using a Job plot, HRMS, 1H NMR spectroscopic titration and IR spectroscopy. Moreover, the calcium in 1-Ca2+ could be displaced by Al3+ ions, resulting in another ratiometric sensing signal output, which indicates that 1-Ca2+ could detect Al3+ ions in a ratiometric way. Bioimaging results also demonstrated that compound 1 could act as an intracellular Al3+ ion imaging sensor.  相似文献   

14.
A new fluorescent sensor 1, based on thiophene and diethylaminophenol moieties, has been synthesized and its binding capabilities for metal-ion and anion recognition were investigated. The sensor 1 showed ‘turn-on’ fluorescence in the presence of Al3+ and F?. The sensing behaviors of 1 with Al3+ and F? were studied by using photophysical experiments, 1H NMR titration, and ESI-mass spectrometry analysis. The detection limits for the analysis of Al3+ and F? were found to be 0.41 μM and 14.36 μM, respectively, which are below the WHO guidelines for drinking water (7.41 μM for Al3+ and 79 μM for F?). Moreover, turn-on fluorescence of 1 toward Al3+ and F? caused by intramolecular charge transfer (ICT) was well explained by density functional theory (DFT) calculations. Importantly, 1 could be used to detect Al3+ in the living cells.  相似文献   

15.
A colorimetric probe N,N’-bis(2-methoxy-ethyl)-2,3,3-trimethyl-3H-squaraine (MOESQ) with H2O solubility was synthesized to detect Cu2+. MOESQ exhibits good selectivity, high sensitivity and fast UV-Vis response toward Cu2+ over other competing ions in CH3CN. The detection limit of MOESQ for Cu2+ in CH3CN can reach 1.88?×?10?7?molL?1. By adsorbing MOESQ on the chromatography paper, a colorimetric test paper for Cu2+ was prepared, which could detect Cu2+ with the color change from blue to faint yellow even in the limit of detection concentration of 10?6?molL?1.  相似文献   

16.
A tripodal receptor R1 with a combination of nitrogen and oxygen-based binding sites was designed and used for the selective determination of Cu2+. The fluorescence emission profile of R1 in the presence of Cu2+ showed a marked enhancement in fluorescence intensity, indicating high selectivity among other metal ions. The R1–Cu2+ complex was further explored as a sensor for anion detection. Upon addition of Br?, switching to a fluorescence “off” state was observed. The Br? selectivity of the complex over a wide range of concentrations was observed via titrimetric analysis through changes in the emission spectra.  相似文献   

17.
In this present study, a simple cation chemoprobe 1 bearing naphthol OH and imine group was designed and synthesized, which was identified as an aggregation induced emission (AIE) active molecule with excited state intramolecular proton transfer (ESIPT) features. In addition, 1 showed both colorimetric detection for Fe3+ and turn-on fluorescence response for Al3+. The binding ratio of 1 to Fe3+ and Al3+ were determined both to be 1:1 via Job’s plot and ESI-mass spectrometry analysis. The limit of detection (LOD) of probe 1 to Fe3+ and Al3+ were 0.10 and 0.43 μM, respectively. Moreover, probe 1 could be used to quantify Fe3+ and Al3+ in environmental water samples.  相似文献   

18.
A novel pyrene-based receptor bearing benzothiazole was synthesized as a good turn-on fluorescent sensor for the recognition of Zn2+. The probe showed an excellent selectivity for Zn2+over most other competing ions (eg, Cr3+, Li+, Cd2+, Al3+, Pb2+, Li+, Mg2+, Ag+, Ca2+, Ni2+, Mn2+, Fe3+, Hg2+, Ba2+, K+, Na+, Cu2+, Fe2+) in EtOH-HEPES (65:35, v/v, pH?=?7.20), which might be attributed to the photoinduced electron transfer (PET) mechanism. The formation of 1:1 stoichiometric PBZ-Zn2+ complex was determined based on the Job's plot, 1H NMR titration and ESI-MS. The binding constant of the complex was 4.04?×?104?M?1 with a detection limit of 2.58?×?10?7?M. The potential application of the PBZ in real water samples for recognizing Zn2+ was investigated. Bio-imaging study also revealed that PBZ could be applied to detecting Zn2+ in live cells. These results indicated that PBZ could be a favorable probe for Zn2+.  相似文献   

19.
A novel diarylethene chemosensor comprising 3-aminobenzofuran-2-carboxamide Schiff base (1O) was synthesized and the photophysical and sensing behaviors of 1O were further investigated. Importantly, the introduction of electron-withdrawing group to 1O made the sensor an efficient tool for detection of toxic cyanide even in the presence of other plausible interfering anions including fluoride and acetate. In particular, addition of CN? to 1O visibly changes the color from colorless to orange-red, which can be observed by the naked eye. Apart from this, it also exhibited an outstanding fluorometric sensing toward Zn2+ with high selectivity and sensitivity. Moreover, the remarkable spectral responses of the devised sensor prompted us to fabricate molecular logic circuit. Furthermore, the sensor was successfully applied to the detection of CN? on test strips and silica coated microslides, and the methods were very simple to operate without resorting to any spectroscopic instrumentation. In addition, the 1O can also effectively detect CN? and Zn2+ in actual water samples.  相似文献   

20.
A pyrene based chemosensor was designed and synthesized. The pyrene fluorophore was connected with a pyridine unit through a Schiff base structure to give the sensor (L). L was tested with a variety of metal ions and exhibited high colorimetric selectivities for Cu2+ and Fe3+ over other ions. Upon binding with Cu2+ or Fe3+, L showed an obvious optical color change from colorless to pink for Cu2+ or orange for Fe3+ over a wide pH range from 3 to 12. Moreover, the fluorescence of L at 370 nm decreased sharply after bonding with Fe3+, while other metal ions including Cu2+ had no apparent interference. Thus, using such single chemosensor, Cu2+ and Fe3+ can be detected independently with high selectivity and sensitivity. The limits of detection toward Cu2+ and Fe3+ were 8.5 and 2.0 μM, respectively. DFT calculation results also proved the formation of stable coordination complexes and the phenomenon of fluorescence quenching by Fe3+. Furthermore, L was also successfully used as a bioimaging reagent for detection of Fe3+ in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号