首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious-metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition-metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm−2 with 95.5±4.0 % CO Faraday efficiency at −1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high-curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali-metal cations resulting in the enhanced CO2 electroreduction efficiency.  相似文献   

2.
CO2 electroreduction is a promising technique for satisfying both renewable energy storage and a negative carbon cycle. However, it remains a challenge to convert CO2 into C2 products with high efficiency and selectivity. Herein, we report a nitrogen‐doped ordered cylindrical mesoporous carbon as a robust metal‐free catalyst for CO2 electroreduction, enabling the efficient production of ethanol with nearly 100 % selectivity and high faradaic efficiency of 77 % at −0.56 V versus the reversible hydrogen electrode. Experiments and density functional theory calculations demonstrate that the synergetic effect of the nitrogen heteroatoms and the cylindrical channel configurations facilitate the dimerization of key CO* intermediates and the subsequent proton–electron transfers, resulting in superior electrocatalytic performance for synthesizing ethanol from CO2.  相似文献   

3.
Electrochemical reduction of CO2 into value‐added product is an interesting area. MoP nanoparticles supported on porous carbon were synthesized using metal–organic frameworks as the carbon precursor, and initial work on CO2 electroreduction using the MoP‐based catalyst were carried out. It was discovered that MoP nanoparticles supported on In‐doped porous carbon had outstanding performance for CO2 reduction to formic acid. The Faradaic efficiency and current density could reach 96.5 % and 43.8 mA cm?2, respectively, when using ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate as the supporting electrolyte. The current density is higher than those reported up to date with very high Faradaic efficiency. The MoP nanoparticles and the doped In2O3 cooperated very well in catalyzing the CO2 electroreduction.  相似文献   

4.
This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon‐based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low‐area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low‐cost, abundant electrocatalysts for synthetic fuel production from CO2.  相似文献   

5.
Electrocatalytic carbon dioxide reduction holds great promise for reducing the atmospheric CO2 level and alleviating the energy crisis. High‐performance electrocatalysts are often required in order to lower the high overpotential and expedite the sluggish reaction kinetics of CO2 electroreduction. Copper is a promising candidate metal. However, it usually suffers from the issues of poor stability and low product selectivity. In this work, bimetallic Cu‐Bi is obtained by reducing the microspherical copper bismuthate (CuBi2O4) for selectively catalyzing the CO2 reduction to formate (HCOO). The bimetallic Cu‐Bi electrocatalyst exhibits high activity and selectivity with the Faradic efficiency over 90% in a wide potential window. A maximum Faradaic efficiency of ~95% is obtained at –0.93 V versus reversible hydrogen electrode. Furthermore, the catalyst shows high stability over 6 h with Faradaic efficiency of ~95%. This study provides an important clue in designing new functional materials for CO2 electroreduction with high activity and selectivity.  相似文献   

6.
The electrochemical CO2 reduction (ECDRR), as a key reaction in artificial photosynthesis to implement renewable energy conversion/storage, has been inhibited by the low efficiency and high costs of the electrocatalysts. Herein, we synthesize a fluorine‐doped carbon (FC) catalyst by pyrolyzing commercial BP 2000 with a fluorine source, enabling a highly selective CO2‐to‐CO conversion with a maximum Faradaic efficiency of 90 % at a low overpotential of 510 mV and a small Tafel slope of 81 mV dec?1, outcompeting current metal‐free catalysts. Moreover, the higher partial current density of CO and lower partial current density of H2 on FC relative to pristine carbon suggest an enhanced inherent activity towards ECDRR as well as a suppressed hydrogen evolution by fluorine doping. Fluorine doping activates the neighbor carbon atoms and facilitates the stabilization of the key intermediate COOH* on the fluorine‐doped carbon material, which are also blocked for competing hydrogen evolution, resulting in superior CO2‐to‐CO conversion.  相似文献   

7.
Electroreduction of CO2 to CO powered by renewable electricity is a possible alternative to synthesizing CO from fossil fuel. However, it is very hard to achieve high current density at high faradaic efficiency (FE). Here, the first use of N,P‐co‐doped carbon aerogels (NPCA) to boost CO2 reduction to CO is presented. The FE of CO could reach 99.1 % with a partial current density of ?143.6 mA cm?2, which is one of the highest current densities to date. NPCA has higher electrochemical active area and overall electronic conductivity than that of N‐ or P‐doped carbon aerogels, which favors electron transfer from CO2 to its radical anion or other key intermediates. By control experiments and theoretical calculations, it is found that the pyridinic N was very active for CO2 reduction to CO, and co‐doping of P with N hinder the hydrogen evolution reaction (HER) significantly, and thus the both current density and FE are very high.  相似文献   

8.
The typical preparation route of carbon‐supported metallic catalyst is complex and uneconomical. Herein, we reported a thiol‐assisted one‐pot method by using 3‐mercaptopropionic acid (MPA) to synthesize carbon‐supported metal nanoparticles catalysts for efficient electrocatalytic reduction of carbon dioxide (CO2RR). We found that the synthesized Au?MPA/C catalyst achieves a maximum CO faradaic efficiency (FE) of 96.2% with its partial current density of ?11.4 mA/cm2, which is much higher than that over Au foil or MPA‐free carbon‐supported Au (Au/C). The performance improvement in CO2RR over the catalyst is probably derived from the good dispersion of Au nanoparticles and the surface modification of the catalyst caused by the specific interaction between Au nanoparticles and MPA. This thiol‐assisted method can be also extended to synthesize Ag?MPA/C with enhanced CO2RR performance.  相似文献   

9.
Efficient, stable catalysts with high selectivity for a single product are essential if electroreduction of CO2 is to become a viable route to the synthesis of industrial feedstocks and fuels. A plasma oxidation pre‐treatment of silver foil enhances the number of low‐coordinated catalytically active sites, which dramatically lowers the overpotential and increases the activity of CO2 electroreduction to CO. At −0.6 V versus RHE more than 90 % Faradaic efficiency towards CO was achieved on a pre‐oxidized silver foil. While transmission electron microscopy (TEM) and operando X‐ray absorption spectroscopy showed that oxygen species can survive in the bulk of the catalyst during the reaction, quasi in situ X‐ray photoelectron spectroscopy showed that the surface is metallic under reaction conditions. DFT calculations reveal that the defect‐rich surface of the plasma‐oxidized silver foils in the presence of local electric fields drastically decrease the overpotential of CO2 electroreduction.  相似文献   

10.
Ni,N‐doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2R) to CO; this activity has often been attributed to the presence of nitrogen‐coordinated, single Ni atom active sites. However, experimentally confirming Ni?N bonding and correlating CO2 reduction (CO2R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile‐derived Ni,N‐doped carbon electrocatalysts (Ni‐PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X‐ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square‐planar geometry that strongly resembles the active sites of molecular metal–porphyrin catalysts.  相似文献   

11.
The design of active, selective, and stable CO2 reduction electrocatalysts is still challenging. A series of atomically dispersed Co catalysts with different nitrogen coordination numbers were prepared and their CO2 electroreduction catalytic performance was explored. The best catalyst, atomically dispersed Co with two‐coordinate nitrogen atoms, achieves both high selectivity and superior activity with 94 % CO formation Faradaic efficiency and a current density of 18.1 mA cm?2 at an overpotential of 520 mV. The CO formation turnover frequency reaches a record value of 18 200 h?1, surpassing most reported metal‐based catalysts under comparable conditions. Our experimental and theoretical results demonstrate that lower a coordination number facilitates activation of CO2 to the CO2.? intermediate and hence enhances CO2 electroreduction activity.  相似文献   

12.
Electrochemical reduction of carbon dioxide (CO2) to CO is regarded as an efficient method to utilize the greenhouse gas CO2, because the CO product can be further converted into high value‐added chemicals via the Fisher–Tropsch process. Among all electrocatalysts used for CO2‐to‐CO reduction, Au‐based catalysts have been demonstrated to possess high selectivity, but their precious price limits their future large‐scale applications. Thus, simultaneously achieving high selectivity and reasonable price is of great importance for the development of Au‐based catalysts. Here, we report Ag@Au core–shell nanowires as electrocatalyst for CO2 reduction, in which a nanometer‐thick Au film is uniformly deposited on the core Ag nanowire. Importantly, the Ag@Au catalyst with a relative low Au content can drive CO generation with nearly 100 % Faraday efficiency in 0.1 m KCl electrolyte at an overpotential of ca. ?1.0 V. This high selectivity of CO2 reduction could be attributed to a suitable adsorption strength for the key intermediate on Au film together with the synergistic effects between the Au shell and Ag core and the strong interaction between CO2 and Cl? ions in the electrolyte, which may further pave the way for the development of high‐efficiency electrocatalysts for CO2 reduction.  相似文献   

13.
Electrochemical conversion of CO2 into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO2 structure, ultrathin Pd nanosheets partially capped by SnO2 nanoparticles, is designed to enable multi‐electron transfer for selective electroreduction of CO2 into CH3OH. Such a structure design not only enhances the adsorption of CO2 on SnO2, but also weakens the binding strength of CO on Pd due to the as‐built Pd–O–Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal‐based catalysts by creating metal oxide interfaces for selective electroreduction of CO2.  相似文献   

14.
It is generally believed that CO2 electroreduction to multi‐carbon products such as ethanol or ethylene may be catalyzed with significant yield only on metallic copper surfaces, implying large ensembles of copper atoms. Here, we report on an inexpensive Cu‐N‐C material prepared via a simple pyrolytic route that exclusively feature single copper atoms with a CuN4 coordination environment, atomically dispersed in a nitrogen‐doped conductive carbon matrix. This material achieves aqueous CO2 electroreduction to ethanol at a Faradaic yield of 55 % under optimized conditions (electrolyte: 0.1 m CsHCO3, potential: ?1.2 V vs. RHE and gas‐phase recycling set up), as well as CO electroreduction to C2‐products (ethanol and ethylene) with a Faradaic yield of 80 %. During electrolysis the isolated sites transiently convert into metallic copper nanoparticles, as shown by operando XAS analysis, which are likely to be the catalytically active species. Remarkably, this process is reversible and the initial material is recovered intact after electrolysis.  相似文献   

15.
Electroreduction of CO2 into carbonaceous fuels or industrial chemicals using renewable energy sources is an ideal way to promote global carbon recycling. Thus, it is of great importance to develop highly selective, efficient, and stable catalysts. Herein, we prepared cobalt single atoms (Co SAs) coordinated with phthalocyanine (Co SAs-Pc). The anchoring of phthalocyanine with Co sites enabled electron transfer from Co sites to CO2 effectively via the π-conjugated system, resulting in high catalytic performance of CO2 electroreduction into CO. During the process of CO2 electroreduction, the Faradaic efficiency (FE) of Co SAs-Pc for CO was as high as 94.8 %. Meanwhile, the partial current density of Co SAs-Pc for CO was −11.3 mA cm−2 at −0.8 V versus the reversible hydrogen electrode (vs RHE), 18.83 and 2.86 times greater than those of Co SAs (−0.60 mA cm−2) and commercial Co phthalocyanine (−3.95 mA cm−2), respectively. In an H-cell system operating at −0.8 V vs RHE over 10 h, the current density and FE for CO of Co SAs-Pc dropped by 3.2 % and 2.5 %. A mechanistic study revealed that the promoted catalytic performance of Co SAs-Pc could be attributed to the accelerated reaction kinetics and facilitated CO2 activation.  相似文献   

16.
The electrochemical reduction reaction of carbon dioxide (CO2RR) to carbon monoxide (CO) is the basis for the further synthesis of more complex carbon‐based fuels or attractive feedstock. Single‐atom catalysts have unique electronic and geometric structures with respect to their bulk counterparts, thus exhibiting unexpected catalytic activities. A nitrogen‐anchored Zn single‐atom catalyst is presented for CO formation from CO2RR with high catalytic activity (onset overpotential down to 24 mV), high selectivity (Faradaic efficiency for CO (FECO) up to 95 % at ?0.43 V), remarkable durability (>75 h without decay of FECO), and large turnover frequency (TOF, up to 9969 h?1). Further experimental and DFT results indicate that the four‐nitrogen‐anchored Zn single atom (Zn‐N4) is the main active site for CO2RR with low free energy barrier for the formation of *COOH as the rate‐limiting step.  相似文献   

17.
The integration of molecular catalysts with low‐cost, solid light absorbers presents a promising strategy to construct catalysts for the generation of solar fuels. Here, we report a photocatalyst for CO2 reduction that consists of a polymeric cobalt phthalocyanine catalyst (CoPPc) coupled with mesoporous carbon nitride (mpg‐CNx) as the photosensitizer. This precious‐metal‐free hybrid catalyst selectively converts CO2 to CO in organic solvents under UV/Vis light (AM 1.5G, 100 mW cm?2, λ>300 nm) with a cobalt‐based turnover number of 90 for CO after 60 h. Notably, the photocatalyst retains 60 % CO evolution activity under visible light irradiation (λ>400 nm) and displays moderate water tolerance. The in situ polymerization of the phthalocyanine allows control of catalyst loading and is key for achieving photocatalytic CO2 conversion.  相似文献   

18.
Electrochemical conversion of carbon dioxide (CO2) to value‐added products is a possible way to decrease the problems resulting from CO2 emission. Thanks to the eminent conductivity and proper adsorption to intermediates, Pd has become a promising candidate for CO2 electroreduction (CO2ER). However, Pd‐based nanocatalysts generally need a large overpotential. Herein we describe that ultrathin Pd nanosheets effectively reduce the onset potential for CO by exposing abundant atoms with comparatively low generalized coordination number. Hexagonal Pd nanosheets with 5 atomic thickness and 5.1 nm edge length reached CO faradaic efficiency of 94 % at ?0.5 V, without any decay after a stability test of 8 h. It appears to be the most efficient among all of Pd‐based catalysts toward CO2ER. Uniform hexagonal morphology made it reasonable to build models and take DFT calculations. The enhanced activity originates from mainly edge sites on palladium nanosheets.  相似文献   

19.
Modular optimization of metal–organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO2 with high efficiency under visible‐light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron–hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long‐lived electrons for the reduction of CO2 molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO2, which is equivalent to a 3.13‐fold improvement in CO evolution rate (200.6 μmol g?1 h?1) and a 5.93‐fold enhancement in CH4 generation rate (36.67 μmol g?1 h?1) compared to the parent MOF.  相似文献   

20.
《化学:亚洲杂志》2018,13(19):2800-2804
Here we report a partially oxidized palladium nanodot (Pd/PdOx) catalyst with a diameter of around 4.5 nm. In aqueous CO2‐saturated 0.5 m KHCO3, the catalyst displays a Faradaic efficiency (FE) of 90 % at −0.55 V vs. reversible hydrogen electrode (RHE) for carbon monoxide (CO) production, and the activity can be retained for at least 24 h. The improved catalytic activity can be attributed to the strong adsorption of CO2.− intermediate on the Pd/PdOx electrode, wherein the presence of Pd2+ during the electroreduction reaction of CO2 may play an important role in accelerating the carbon dioxide reduction reaction (CO2RR). This study explores the catalytic mechanism of a partially oxidized nanostructured Pd electrocatalyst and provides new opportunities for improving the CO2RR performance of metal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号