首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
Complex formation equilibria between Ag(I) and thiourea or N-alkyl-substituted thioureas have been investigated in n-propanol by potentiometry at 10 °C intervals from 5 to 50 °C. Stepwise formation of tris-coordinated AgLn (n = 1-3) complexes has been found for the majority of the ligands. ΔH and ΔS values for the complex formation reactions have been evaluated from the dependence of ln βn on temperature. The alkyl-substituents affect the ligand affinities in different ways in relation with the coordination level n.The reactions are exothermic with few exceptions. Enthalpy favoured complex formation with negative dependence of ΔG on temperature (ΔS > 0) have been found.The enthalpy and entropy changes for the stepwise complex formation equilibria are correlated by two linear compensative relationships with the same isoequilibrium temperature 50-51 °C.  相似文献   

2.
An excellent visible-light-responsive (from 400 to 550 nm) TiO2−xNx photocatalyst was prepared by a simple wet method. Hydrazine was used as a new nitrogen resource in this paper. Self-made amorphous titanium dioxide precursor powders were dipped into hydrazine hydrate, and calcined at low temperature (110 °C) in the air. The TiO2−xNx was successfully synthesized, following by spontaneous combustion. The photocatalyst was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), UV-Vis diffuse reflectance spectrometer (DRS), and X-ray photoelectron spectroscopy (XPS). Analysis of XPS indicated that N atoms were incorporated into the lattice of the titania crystal during the combustion of hydrazine on the surface of TiO2. Ethylene was selected as a target pollutant under visible-light excitation to evaluate the activity of this photocatalyst. The newly prepared TiO2−xNx photocatalyst with strong photocatalytic activity and high photochemical stability under visible-light irradiation was firstly demonstrated in the experiment.  相似文献   

3.
In this study, the usability of the plant thistle, Onopordum acanthium L., belonging to the family Asteraceae (Compositae), in liquid fuel production has been investigated. The experiments were performed in a fixed-bed Heinze pyrolysis reactor to investigate the effects of heating rate, pyrolysis temperature and sepiolite percentage on the pyrolysis product yields and chemical compositions. Experiments were carried out in a static atmosphere with a heating rate of 7 °C/min and 40 °C/min, pyrolysis temperature of 350, 400, 500, 550 and 700 °C and particle size of 0.6 < Dp < 0.85 mm. Catalyst experiments were conducted in a static atmosphere with a heating rate of 40 °C/min, pyrolysis temperature of 550 °C and particle size of 0.6 < Dp < 0.85 mm. Bio-oil yield increased from 18.5% to 27.3% with the presence of 10% of sepiolite catalyst at pyrolysis temperature of 550 °C, with a heating rate of 40 °C/min, and particle size of 0.6 < Dp < 0.85 mm. It means that the yield of bio-oil was increased at around 48.0% after the catalyst added. Chromatographic and spectroscopic studies on the bio-oil showed that the oil obtained from O. acanthium L. could be used as a renewable fuels and chemical feedstock.  相似文献   

4.
SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L−1. The anatase and rutile phase in the SiO2/TiO2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO2/TiO2 composite microspheres were 552 and 0.652 mL g−1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.  相似文献   

5.
The hydrothermal synthesis of nanocrystalline ZnSe has been studied by in situ X-ray powder diffraction using synchrotron radiation. The formation of ZnSe was studied using the following starting mixtures: Zn+Se+H2O (route A) and ZnCl2+Se+H2O+Na2SO3 (route B). The route A experiment showed that Zn powder starts reacting with water at 134 °C giving ZnO and H2 followed by the formation of ZnSe which takes place in temperature range from 167 to 195 °C. The route B experiment shows a considerably more complex reaction path with several intermediate phases and in this case the formation of ZnSe starts at 141 °C and ZnSe and Se were the only crystalline phases observed at the end of the experiment where the temperature was 195 °C. The sizes of the nanocrystalline particles were determined to 18 and 9 nm in the route A and B experiments, respectively. Nanocrystalline ZnSe was also synthesized ex situ using the route A and B methods and characterized by conventional X-ray powder diffraction and transmission electron microscopy. An average crystalline domain size of ca. 8 nm was determined by X-ray powder diffraction in fair agreement with TEM images, which showed larger aggregates of nanoparticles having approximate diameters of 10 nm. Furthermore, a method for purification of the ZnSe nanoparticles was developed and the prepared particles showed signs of anisotropic size broadening of the diffraction peaks.  相似文献   

6.
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by 5D0-7F2 transition of Eu3+ (618 nm, red). The PL and CL intensities of Eu3+ increase with increasing the annealing temperature and the number of coating cycles. The optimum concentration for Eu3+ was determined to be 5 mol% of Gd3+ in GdVO4 host.  相似文献   

7.
In this paper, we describe the structural and sensing properties of high-k PrYxOy sensing films deposited on Si substrates through reactive co-sputtering. Secondary ion mass spectrometry and atomic force microscopy were employed to analyze the compositional and morphological features of these films after annealing at various temperatures. The electrolyte-insulator-semiconductor (EIS) device incorporating a PrYxOy sensing membrane that had been annealed at 800 °C exhibited good sensing characteristics, including a high sensitivity (59.07 mV pH−1 in solutions from pH 2 to 12), a low hysteresis voltage (2.4 mV in the pH loop 7 → 4 → 7 → 10 → 7), and a small drift rate (0.62 mV h−1 in the buffer solution at pH 7). The PrYxOy EIS device also showed a high selective response towards H+. This improvement can be attributed to the small number of crystal defects and the large surface roughness. In addition, the enzymatic EIS-based urea biosensor incorporating a high-k PrYxOy sensing film annealed at 800 °C allowed the potentiometric analysis of urea, at concentrations ranging from 1 to 16 mM, with a sensitivity of 9.59 mV mM−1.  相似文献   

8.
The porous hierarchical spherical Co3O4 assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co3O4 nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 °C are 72.5 m2 g−1 and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are strongly dependent on the porosity.  相似文献   

9.
Ag/SiO2 nanocomposite was synthesized in a nanoreactor formed by adsorption layer on silica surface. Ag nanoparticles were prepared by the reduction of Ag ion with ethanol at alkaline condition. By using TEM and XRD, the effects of NaOH concentration, water and temperature on the appearance and grain size of Ag particles were analyzed, respectively. The adsorption curve of NaOH was measured by electrical conductivity meter. The experiment result revealed that Ag grain size decreased while increasing NaOH concentration or while increasing water in our system. Ag grain size increased with the increase of temperature. And Ag aggregated seriously when temperature is up to 60 °C. Finally, after exploring the optimum conditions of reaction, we successfully obtained the well-distributed Ag nanoparticles on surface of silica, and average grain size of Ag nanoparticles reached 5 nm.  相似文献   

10.
K2NbO3F powders were directly synthesized by an alternative solid-state method at low temperature. Stoichiometric ammonium niobium oxalate, K2C2O4 and KF were mixed with small amounts of water and then dried at room temperature. X-ray diffraction results show that layered perovskite K2NbO3F powders can be obtained by calcining the mixture in temperature range from 550 to 700 °C for 3 h. The elemental composition, powder morphology and particle size of calcination products were analyzed by scanning electron microscope-energy dispersive spectroscopy (SEM/EDS). The SEM images suggest that the particles of the powders obtained at 550 °C are irregular platelets with a diameter of 0.5-1 μm and a thickness of 100-200 nm. The platelets are 3-5 μm in diameter and 1-2 μm in thickness when the calcination temperature reaches 700 °C. K2NbO3F decomposes to K5(NbO3)4F and KF when the temperature reaches 800 °C.  相似文献   

11.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

12.
Hyphenation of thermogravimetric analyzer (TGA) and thermo-Raman spectrophotometer for in situ monitoring of solid-state reaction in oxygen atmosphere forming NiO-Al2O3 catalyst nanoparticles is investigated. In situ thermo-Raman spectra in the range from 200 to 1400 cm−1 were recorded at every degree interval from 25 to 800 °C. Thermo-Raman spectroscopic studies reveal that, although the onset of formation is around 600 °C, the bulk NiAl2O4 forms at temperatures above 800 °C. The X-ray diffraction (XRD) spectra and the scanning electron microscopy (SEM) images of the reaction mixtures were recorded at regular temperature intervals of 100 °C, in the temperature range from 400 to 1000 °C, which could provide information on structural and morphological evolution of NiO-Al2O3. Slow controlled heating of the sample enabled better control over morphology and particle size distribution (∼20-30 nm diameter). The observed results were supported by complementary characterizations using TGA, XRD, SEM, transmission electron microscopy, and energy dispersive X-ray analysis.  相似文献   

13.
The characteristics of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 (BSTZ) composites are investigated for the further application in embedded capacitor device. The effects of BSTZ ceramic powder filler ratio on the chemical, physical and dielectric properties of epoxy/BSTZ composites are studied. Differential scanning calorimeter (DSC) thermal analysis is conducted to determine the optimum values of hardener agent, curing temperature, reaction heat, and glass transition temperature (Tg). The hardener reaction process starts at about 115 °C and completes at about 200 °C, for that it is appropriate to process of epoxy/BSTZ composites in the range of temperature. The highest glass transition temperature (Tg) of 155 °C is obtained at one equivalent weight ratio (hardener/epoxy). Only the BSTZ phase can be detected in the XRD patterns of epoxy/BSTZ composites. The more BSTZ ceramic powder is mixed with epoxy, the higher crystalline intensity of tetragonal BSTZ phase are revealed in the XRD patterns. The dielectric constant measured at 1 MHz increases from 5.8 to 23.6 as the content of BSTZ ceramic powder in the epoxy/BSTZ composites increases from 10 to 70 wt%. The loss tangents of the epoxy/BSTZ composites slightly increase with the increase of measurement frequency.  相似文献   

14.
A-site substituted cerium orthovanadates, Ce1−xSrxVO4, were synthesised by solid-state reactions. It was found that the solid solution limit in Ce1−xSrxVO4 is at x=0.175. The crystal structure was analysed by X-ray diffraction and it exhibits a tetragonal zircon structure of space group I41/amd (1 4 1) with a=7.3670 (3) and c=6.4894 (1) Å for Ce0.825Sr0.175VO4. The UV-vis absorption spectra indicated that the compounds have band gaps at room temperature in the range 4.5-4.6 eV. Conductivity measurements were performed for the first time up to the strontium solid solution limit in air and in dry 5% H2/Ar with conductivity values at 600 °C ranging from 0.3 to 30 mS cm−1 in air to 30-45 mS cm−1 in reduced atmosphere. Sample Ce0.825Sr0.175VO4 is redox stable at a temperature below 600 °C although the conductivity is not high enough to be used as an electrode for solid oxide fuel cells.  相似文献   

15.
An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Mössbauer spectra, and powder X-ray diffraction using Co Kα radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe2O3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe2O3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition.  相似文献   

16.
Structural data obtained from neutron diffraction studies of some cerium tantalate phases are presented, including the first report of the high temperature structure of a CeTaO4 phase, Ce0.85TaO3.84 deduced from in situ data recorded at 900°C in vacuum. It was found that this material transformed from the low temperature LaTaO4 type phase to the orthorhombic A21am structure reported here, with a unit cell of a=5.64062(2) Å, b=14.81609(6) Å and c=3.93482(1) Å. This data agrees well with the previously proposed structural transformations.  相似文献   

17.
Formation of nano-sized Y2O3-doped CeO2 (YCO) was observed in the chemical reaction between proton conducting Y2O3-doped BaCeO3 (BCY) and CO2 in the temperature range 700-1000 °C, which is generally prepared by wet-chemical methods that include sol-gel, hydrothermal, polymerization, combustion, and precipitation reactions. BCY can capture CO2 of 0.13 g per ceramic gram at 700 °C, which is comparable to that of the well-known Li2ZrO3 (0.15 g per ceramic gram at 600 °C). Powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDX), laser particle size analysis (LPSA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ac impedance spectroscopy were employed to characterize the reaction product obtained from reaction between BCY and CO2 and subsequent acid washing. PXRD study reveals presence of fluorite-like CeO2 (a=5.410 (1) Å) structure and BaCO3 in reaction products. TEM investigation of the acid washed product showed the formation of nano-sized material with particle sizes of about 50 nm. The electrical conductivity of acid washed product (YCO) in air was found to be about an order higher than the undoped CeO2 reported in the literature.  相似文献   

18.
Mesoporous silica, prepared in basic conditions, has been loaded (20% weight) with 12-molybdophosphoric (PMo) or 12-tungstophosphoric (PW) acid and calcined at different temperatures ranging between 250 and 550 °C. The samples have been characterised by N2 adsorption-desorption at −196 °C, transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), UV-visible diffuse reflectance, Raman spectroscopy and temperature programmed reduction (TPR). The acidity and catalytic activity have been, respectively, examined by monitoring the adsorption of pyridine and 2-butanol by FT-IR spectroscopy. The results indicate that PW and PMo acids are highly dispersed on mesoporous silica MCM-41 spherical nanoparticles. While PMo retains its Keggin structure up to 550 °C, PW decomposes at this temperature into crystalline WO3 and phosphorous oxides. In both cases, the morphology, hexagonal symmetry and long-range order observed for the support are preserved with calcination up to 450 °C. The Brönsted-type acid sites found in all samples, whose surface concentration decreases as the calcination temperature increases, are responsible for the selective formation of cis-butene detected upon adsorption of 2-butanol. The sample containing PW calcined at 450 °C also shows selectivity to methyl ethyl ketone.  相似文献   

19.
To obtain a recyclable surface-enhanced Raman scattering (SERS) material, we developed a composite of Fe3O4\SiO2\Ag with core\shell\particles structure. The designed particles were synthesized via an ultrasonic route. The Raman scattering signal of Fe3O4 could be shielded by increasing the thickness of the SiO2 layer to 60 nm. Dye rhodamine B (RB) was chosen as probe molecule to test the SERS effect of the synthesized Fe3O4\SiO2\Ag particles. On the synthesized Fe3O4\SiO2\Ag particles, the characteristic Raman bands of RB could be observed when the RB solution was diluted to 5 ppm (1×10−5 M). Furthermore, the synthesized particles could keep their efficiency till four cycles.  相似文献   

20.
The phase relations have been studied in the BaO-CuOx system in the range of 25.0-45.0 mol% CuO at 900-1100 °C at P(O2)=21 kPa (air) by visual polythermal analysis (VPA), powder X-ray diffraction (XRD), electron diffraction (ED) with simultaneous energy-dispersive X-ray (EDX) elemental analysis in a transmission electron microscope (TEM), and iodometric chemical analysis. The discrete deviations 2.02 (101:50), 2.04 (102:50), 2.10 (105:50) of Ba/Cu (Ba:Cu) composition from the stoichiometric ratio 2:1 have been found for the known Ba2CuO3+δ oxides in the subsolidus region 900-970 °C. Unit cell parameters of the 101:50 orthorhombic oxide, 102:50 tetragonal one, 105:50 orthorhombic one are, respectively, a=4.049, b=3.899, c=13.034 Å; a=3.985, c=12.968 Å; a=4.087, b=3.897 and c=12.950 Å. ED patterns of the 101:50, 102:50, 105:50 oxides show characteristic supercell reflections with the respective vector 1/60[5 4 0], ≈2/11〈1 1 0〉 and 1/6[2 0 0]. Oxides of the 2:1, 7:4, 5:3 and 23:20 compositions have been found in the crystallization region 970-1050 °C. Unit cell parameters of the 2:1 orthorhombic oxide are a=4.095, b=3.795, c=13.165 Å. Interplanar spacings and X-ray characteristic peak intensities of the 7:4, 5:3 and 23:20 oxides are given. Oxides 2:1 and 7:4 melt pseudocongruently at 1020 and 1005 °C, oxides 5:3 and 23:20 melt incongruently at 995 and 980 °C, respectively. A diagram of the phase relations in the studied region of the BaO-CuOx system has been constructed, whose structure is considered as the total projection of phase states of the system existing for different x.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号