首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composition-induced structural phase changes across the high temperature, fast oxide ion conducting (Ba1−xLax)2In2O5+x, 0?x?0.6, system have been carefully analysed using hard mode infrared (IR) powder absorption spectroscopy, X-ray powder diffraction and electron diffraction. An orthorhombic brownmillerite to three-dimensionally disordered cubic perovskite phase transition in this system is signalled by a drastic change in slope of both wavenumber and average line widths of IR spectra as a function of composition. Some evidence is found for the existence of an intermediate tetragonal phase (previously reported to exist from electron diffraction data) around x∼0.2. The new spectroscopic data have been used to compare microscopic and macroscopic strain parameters arising from variation in composition. The strain and spectroscopic data are consistent with first-order character for the tetragonal→orthorhombic transition, while the cubic→tetragonal transition could be continuous. Differences between the variation with composition of spectral parameters and of macroscopic strain parameters are consistent with a substantial order/disorder component for the transitions. There is also evidence for precursor effects within the cubic structure before symmetry is broken.  相似文献   

2.
A new complete solid solution of NASICON-type compounds between LiZr2(PO4)3 and La1/3Zr2(PO4)3 was evidenced with the general formula Li1−xLax/3Zr2(PO4)3 (0?x?1). These phases were synthesized by a complex polymerizable method and structurally characterized from Rietveld treatment of their X-ray and neutron powder diffraction data. This solid solution results from the substitution mechanism Li+→1/3La3++2/3□ leading to an increase of the vacancies number correlated to an increase of the La content. According to this substitution mechanism, the general formula can then be written Li1−xLax/32x/3Zr2(PO4)3 (0?x?1) in order to underline the correlation between the La content and the vacancies rate. For all the compounds, the structure is clearly related to that of the NASICON family with three crystallographic domains evidenced. For 0?x?0.5, all the members adopt at high temperature the typical NASICON-type structure (s.g. Rc), while at lower temperature, their structure distorts to a triclinic form (s.g. C 1¯), as observed for LiZr2(PO4)3 prepared above 1100 °C. Moreover, in this domain, the reversible transition is clearly soft and the transition temperature strongly depends of the x value. For 0.6?x?0.9, the compounds crystallize in a rhombohedral cell (s.g. R3¯), while for x=1, the phase La1/3Zr2(PO4)3 is obtained (s.g. P3¯, Z=6, a=8.7378(2) Å, c=23.2156(7) Å).This paper is devoted to the structure analysis of the series Li1−xLax/3Zr2(PO4)3 (0?x?1), from X-ray and neutron powder thermo diffraction and transmission electron microscopy (TEM) studies.  相似文献   

3.
Differential thermal analysis coupled to temperature-controlled diffraction have given evidence of a topological metastability phenomenon in an extended compositional range of the La2−xNdxMo2O9 solid solution. A metastable-stable phase diagram is proposed for this series of LAMOX-type fast oxide-ion conductors. In the Nd range 0<x?0.35, a freezing of the oxygen/vacancy disorder of the β-phase at ambient temperature can be achieved through a splat-quenching to water-ice mixture or/and shaping/sintering into pellet. In the intermediate 0.4?x?1.2 range, the amount of β-metastable phase grows upon substitution for powders. The negative impact of β-metastable to α phase transition on conductivity tends to disappear through the partial stabilization of the β phase by shaping/sintering.  相似文献   

4.
Zr1−xLnxW2O8−x/2 solid solutions (Ln=Eu, Er, Yb) of different substitution fractions x have been synthesized. Their X-ray diffraction (XRD) patterns have been indexed and lattice parameters calculated based on the α-ZrW2O8 structure. The coefficients of thermal expansion (CTEs) of these solid solutions were estimated to be −10.3×10−6 K−1 in temperature range of 30-100 °C. The solubility of lanthanide ions in these solid solutions decreases linearly with the increase in the radius of substituted lanthanide ions. Based on the concentration dependence of phase transition temperatures, a novel method for determination of solubility of the lanthanide ions in Zr1−xLnxW2O8−x/2 solid solutions has been developed. This method seems to be more sensitive as compared with that based on XRD technique.  相似文献   

5.
Phase relations of rutile, freudenbergite, and hollandite structures were examined in the pseudobinary system NaCrO2-TiO2 (i.e., NaxCrxTi8−xO16) at 1350 °C. The hollandite structure was obtained in the composition range 1.7?x?2.0. The symmetry of the samples at room temperature was tetragonal for x=1.7 and 1.75, and monoclinic for x=1.8 and above. Single crystals of monoclinic hollandite Na2Cr2Ti6O16 were grown and the structure refinement has been carried out using an X-ray diffraction technique. The space group was I2/m and cell parameters were a=10.2385(11), b=2.9559(9), c=9.9097(11)Å, and β=90.545(9)° with Z=1. The Na ion distribution in the tunnel was markedly deformed from that in the tetragonal form. It was suggested that Cr/Ti ratios were different between the two framework metal sites.  相似文献   

6.
The microstructure and phase stability of nanocrystalline mixed oxide LuxCe1−xO2−y (x=0-1) are described. Nano-sized (3-4 nm) oxide particles were prepared by the reverse microemulsion method. Morphological and structural changes upon heat treatment in an oxidizing atmosphere were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Yb3+ emission spectroscopy, the latter ion being present as an impurity in the Lu2O3 starting material. Up to 950 °C, the samples were single phase, with structure changing smoothly with Lu content from fluorite type (F) to bixbyite type (C). For the samples heated at 1100 °C phase separation into coexisting F- and C-type structures was observed for 0.35<x<0.7. It was also found that addition of Lu strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C.  相似文献   

7.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

8.
Cubic ZrW2−xMoxO8 (c-ZrW2−xMoxO8) (x=0-1.3) solid solutions were prepared by a novel polymorphous precursor transition route. X-ray diffraction (XRD) analysis reveals that the solid solutions are single phase with α- and β-ZrW2O8 structure for 0?x?0.8 and 0.9?x?1.3, respectively. The optimum synthesis conditions of ZrWMoO8 are obtained from differential scanning calorimetry-thermal gravimetric analysis (DSC-TGA), XRD and mass loss-temperature/time curves. Following the above experience, the stoichiometric solid solutions of c-ZrW2−xMoxO8 (x=0-1) are obtained within 1 wt% of mass loss. The relationships of lattice parameters (a), phase transition temperatures (Tc) and instantaneous coefficients of thermal expansion (αi) against the content x of Mo are discussed based on the variation of order degree parameters of ZrW2−xMoxO8.  相似文献   

9.
In this work Bi(SbxNbyTaz)O4 (x + y + z = 1) samples are prepared using mixed-oxide method. A pseudo-ternary phase diagram of Bi(Sb,Nb,Ta)O4 system is given below the melting point. It is composed of a monoclinic phase region, an orthorhombic phase region and a monoclinic–orthorhombic co-existing phase region. In the orthorhombic phase region, the transformation from orthorhombic to triclinic phase is found to be sensitive to the composition and sintering temperature. Both the transformation from monoclinic to orthorhombic structure and the transformation from orthorhombic to triclinic structure have been studied by the cell parameters.  相似文献   

10.
Polycrystalline samples of the n=1 Ruddlesden-Popper system Pr3−xSr1+xCrNiO8 have been synthesized over the composition range 0.0<x?1.0 either by the ceramic method or from solution. They have been characterized by an appropriate combination of diffraction methods (X-ray, neutron and electron) and magnetometry (d.c. and a.c.). All compositions having x>0.1 adopt the tetragonal space group I4/mmm; Pr2.9Sr1.1CrNiO8 adopts the orthorhombic space group Fmmm. There is no evidence of Cr/Ni cation ordering in any composition. A maximum in the zero-field cooled magnetic susceptibility is observed at a temperature Tf that decreases with increasing Sr content; 52?Tf (K)?13. The frequency dependence of Tf observed in a.c. susceptibility measurements, together with the analysis of neutron diffraction data, suggests that the atomic magnetic moments in these compositions adopt a spin-glass-like state below Tf.  相似文献   

11.
A novel series of the formula NdSrNi1−xCuxO4−δ were synthesized for various values of x ranging from 0 to 1 in 1 atm of O2 gas flow using conventional solid-state methods and were characterized by powder X-ray diffraction and electrical resistivity measurements. The compounds have been shown to adopt the K2NiF4-type structure. The oxygen stoichiometry of the compounds was determined from thermo-gravimetric analysis (TGA). An analysis of the micro-structure of the neodymium strontium nickel copper oxide is described. All the samples were semi-conducting from room temperature down to 77 K. The effect of Cu2+ incorporation on the structural and electrical properties of NdSrNi1−xCuxO4−δ, 0?x?1, are discussed in terms of Jahn-Teller distortion of the (Ni/Cu)O6 octahedra and mixed valence character of copper.  相似文献   

12.
The La(Mn0.5Co0.5)1−xCuxO3−δ series with x=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 was synthesized by the Pechini method to obtain insight into the phase formation in the quasi-ternary LaMnO3-LaCoO3-“LaCuO3” system caused by the instability of LaCuO3 under ambient conditions. After sintering at 1100°C some remarkable results were obtained: LaMn0.3Co0.3Cu0.4O3−δ crystallized as a single phase in the orthorhombic perovskite structure typical of LaCuO3. Among the synthesized compositions this compound showed the highest electrical conductivity in air at 800°C (155 S cm−1) and also the highest thermal expansion coefficient (α30−800°C=15.4×10−6 K−1). The LaCuO3−δ composition also crystallized as a single phase but in a monoclinic structure although previous investigations have shown that other phases are preferably formed after sintering at 1100°C. The electrical conductivity and thermal expansion coefficient were the lowest within the series of compositions, i.e. 9.4 S cm−1 and 11.9×10−6 K−1, respectively.  相似文献   

13.
A complete solid solution between relaxor ferroelectric Pb(Fe2/3W1/3)O3 (PFW) and ferroelectric PbTiO3 (PT), (1−x)PFW-xPT, was synthesized by a B-site precursor method and characterized by X-ray diffraction, differential scanning calorimetry, and dielectric measurements. A phase diagram between PFW and PT has been established. The diffuse phase transition temperature (Tmax≈180 K) of PFW was found to continuously increase with the increasing amount of Ti4+ ions on the B-site. At the same time, the relaxor ferroelectric behavior of PFW is gradually transformed toward a normal ferroelectric state, as evidenced by sharp and nondispersive peaks of dielectric permittivity around TC for x≥0.25. At room temperature, a transition from a cubic to a tetragonal phase takes place with x increased up to 0.25. A morphotropic phase boundary is located within the composition interval 0.25≤x≤0.35, which separates a pseudocubic (rhombohedral) phase from a tetragonal phase.  相似文献   

14.
Powder neutron and X-ray diffraction studies show that the double perovskites in the region 0?x?1 exhibit two crystallographic modifications at room temperature: monoclinic P21/n and tetragonal I4/m, with a boundary at 0.75<x<0.9. Magnetic susceptibility measurements indicate that for x=0 and 0.5 Sr2−xLaxMnWO6 orders antiferromagnetically (AFM) at 15 and 25 K, respectively, for 0.75?x<1.0, a contribution of weak ferromagnetism (FM), probably due to canted-AFM order, increases with increasing x. The end point compound SrLaMnWO6 shows the strongest FM cluster effect; however, no clear evidence of magnetic order is discernable down to 4.2 K. X-ray absorption spectroscopy (XAS) confirms Mn2+ and mixed-valent W6+/5+ formal oxidation states in Sr2−xLaxMnWO6.  相似文献   

15.
The influence of small amounts of Fe3+ on the phase transitions of CaTiO3 perovskite has been studied by means of in situ high-temperature neutron diffraction. The same sequence of phase transitions as observed in CaTiO3 is shown by both CaTi0.9Fe0.1O2.95 and CaTi0.8Fe0.2O2.90 perovskites: from orthorhombic Pnma symmetry at room temperature (RT) to cubic Pm3m at high temperature, with an intermediate I4/mcm tetragonal phase which exists over a temperature range of about 100°C. The two phase boundaries in the temperature vs composition phase diagram of the system CaFexTi1−xO3−x/2 (0≤x≤0.4) decrease in a quasi-linear manner with increasing Fe content up to x=0.2 and then they both drop abruptly to RT. The existence of a second orthorhombic phase (Cmcm), which has been postulated for CaTiO3, is ruled out in the Fe-doped CaTiO3 perovskites in view of the behavior of specific diffraction peaks. Strain analysis shows first-order thermodynamic character for the PnmaI4/mcm transition, while the character of the Pm3mI4/mcm transition could be second order or tricritical. Shear strains behave more or less classically, as described by order parameter coupling and shear strain/order parameter coupling models. The volume strain has an anomalous coupling with the order parameter components, which appears to be temperature-dependent.  相似文献   

16.
Compounds in the solid solution series Ca1−xNaxTi1−xTaxO3 were synthesized at 1300 °C, followed by annealing at 850 °C or 800 °C with quenching and/or slow cooling to room temperature. Rietveld refinement of their powder X-ray diffraction patterns show that all compounds are single-phase ternary perovskites which adopt the space group Pbnm (a≈b≈√2ap; c≈2ap; Z=4) at ambient conditions. The unit cell parameters and cell volumes of the compounds increase regularly with increasing values of x. The coordination of the A-site cations changes throughout the series from eight for CaTiO3 to nine for NaTaO3. Compounds with 0?x ?0.4 have A-site cations in eight fold coordination, whereas the coordination of those with 0.4<x<0.9 is ambiguous. Analysis of the crystal chemistry of the compounds shows that the change in coordination at x=0.4 is related to the departure of the B-site cations from the second coordination sphere of the A-site cations, as in compounds with x>0.4 the A-IIO distances become less than the A-B intercation distances. Contemporaneous with these coordination changes, the tilt angles of the BO6 polyhedra decrease with increasing values of x. This solid solution series is unusual in that these structural and coordination changes occur regardless that Goldschmidt tolerance factors remain essentially constant at approximately 0.89, and observed tolerance factors, assuming eight fold coordination of the A-site cations, range only from 0.91 to 0.93 (0?x?0.8).  相似文献   

17.
Various compositions of solid solutions K3P(Mo1−xWx)12O40 (0?x?1) were prepared using two solid state synthetic routes. The crystallite size was determined by linewidth refinements of X-ray diffraction patterns using the Warren-Averbach method, and the grain size distribution by laser scattering experiments. Optical properties were determined by diffuse reflectance measurements in the UV-visible range. The optical gap Eg was found to increase exponentially from ∼2.5 to ∼3.30 eV with increasing x, and is systematically shifted to a higher energy when the grain size decreases. The relation between Eg and x was analyzed by calculating the HOMO-LUMO gaps of the [P(Mo1−xWx)12O40]3− anions on the basis of tight-binding electronic structure calculations.  相似文献   

18.
Crystal structures of solid solutions of BiMn1−xScxO3 with x=0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 were studied with synchrotron X-ray powder diffraction. The strong Jahn-Teller distortion, observed in BiMnO3 at 300 K and associated with orbital order, disappeared already in BiMn0.95Sc0.05O3. The orbital-ordered phase did not appear in BiMn0.95Sc0.05O3 down to 90 K. Almost the same octahedral distortions were observed in BiMn1−xScxO3 with 0.05?x?0.7 at room temperature and in BiMnO3 at 550 K above the orbital ordering temperature TOO=473 K. These results allowed us to conclude that the remaining octahedral distortions observed in BiMnO3 above TOO are the structural feature originated from the highly distorted monoclinic structure.  相似文献   

19.
Perovskite type LaCoxFe1−xO3 nanoparticles was synthesized by a sol-gel citrate method. The structural, electrical and sensing characteristics of the LaCoxFe1−xO3 system were investigated. The structural characteristics were performed by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) to examine the phase and morphology of the resultant powder. The XRD pattern shows nanocrystalline solid solution of LaCoxFe1−xO3 with perovskite phase. Electrical properties of synthesized nanoparticles are studied by DC conductivity measurement. The sensor shows high response towards ammonia gas in spite of other reducing gases when x = 0.8. The effect of 0.3 wt.% Pd-doped LaCo0.8Fe0.2O3 on the response and a recovery time was also addressed.  相似文献   

20.
The phase transition behavior of perovskite-type compounds, La1−xSrxCrO3, was investigated by differential scanning calorimetry (DSC), dilatometry, dc magnetic susceptibility measurement and X-ray diffraction analysis. Both second-order magnetic phase transition from antiferromagnetic to paramagnetic and first-order structural phase transition from orthorhombic to rhombohedral were observed in the DSC or dilatometric curve of every specimen. The temperatures of both these magnetic and structural phase transitions decreased linearly with an increase in Sr content. The structural phase transition temperature of La1−xSrxCrO3 with x less than 0.11 is higher than the magnetic phase transition temperature; however, a larger decrease in structural phase transition temperature than in magnetic phase transition temperature was observed with an increase in Sr content, resulting in a structural phase transition temperature lower than the magnetic phase transition temperature for La1−xSrxCrO3 with x of more than 0.12. It was also observed that the heat of absorption of the structural phase transition decreased with an increase in x. In the dependence of dc magnetic susceptibility on temperature, variations by not only magnetic but also structural phase transitions were observed. It was also revealed that thermal expansion coefficient is affected not only by structural phase transition but also magnetic phase transition. Magnetic and structural phase diagram of La1−xSrxCrO3, suggesting the existence of two Sr contents and temperatures at which triple phases coexist, was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号