首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Biaryl‐bridged cyclic peptides comprise an intriguing class of structurally diverse natural products with significant biological activity. Especially noteworthy are the antibiotics arylomycin and its synthetic analogue G0775, which exhibits potent activity against Gram‐negative bacteria. Herein, we present a simple, flexible, and reliable strategy based on activating‐group‐assisted catalytic oxidative coupling for assembling biaryl‐bridged cyclic peptides from natural amino acids. The synthetic approach was utilized for preparing a number of natural and unnatural biaryl‐bridged cyclic peptides, including arylomycin/G0775 and RP 66453 cyclic cores.  相似文献   

2.
Four α-cyano-containing ethers based on 2-alkoxy-2-naphthylacetonitriles have been designed as a novel structural class of cytochrome P450 fluorescent probes. Their syntheses, fluorescence properties and evaluation in the fluorogenic assay of cytochrome P450 monooxygenase are reported. After P450 enzymatic O-dealkylation, the cyanohydrin metabolite of the four new substrates rearranges to a fluorescent aromatic aldehyde with a larger Stokes shift, and the new substrates exhibit higher specific activities than that of the commercial substrate 7-ethoxyresorufin (ER).  相似文献   

3.
Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full‐length membrane‐bound P450 and its redox partner cytochrome b5 (cytb5) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane‐bound complex in model membranes renders high‐resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450–cytb5 complex in peptide‐based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450–cytb5 complex in the nanodisc. This is the first successful demonstration of a protein–protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane‐bound protein complexes.  相似文献   

4.
Glycosylation of natural products, including antibiotics, often plays an important role in determining their physical properties and their biological activity, and thus their potential as drug candidates. The arylomycin class of antibiotics inhibits bacterial type I signal peptidase and is comprised of three related series of natural products with a lipopeptide tail attached to a core macrocycle. Previously, we reported the total synthesis of several A series derivatives, which have unmodified core macrocycles, as well as B series derivatives, which have a nitrated macrocycle. We now report the synthesis and biological evaluation of lipoglycopeptide arylomycin variants whose macrocycles are glycosylated with a deoxy-α-mannose substituent, and also in some cases hydroxylated. The synthesis of the derivatives bearing each possible deoxy-α-mannose enantiomer allowed us to assign the absolute stereochemistry of the sugar in the natural product and also to show that while glycosylation does not alter antibacterial activity, it does appear to improve solubility. Crystallographic structural studies of a lipoglycopeptide arylomycin bound to its signal peptidase target reveal the molecular interactions that underlie inhibition and also that the mannose is directed away from the binding site into solvent which suggests that other modifications may be made at the same position to further increase solubility and thus reduce protein binding and possibly optimize the pharmacokinetics of the scaffold.  相似文献   

5.
The biosynthesis of glycopeptide antibiotics (GPAs) has been an active area of research for decades. But, insights into the activity of the cytochrome P450 enzymes required for installing the aromatic crosslinks, which form their cup-shaped topologies and render GPAs bioactive, have only recently emerged. Presently, little is known about the substrate scope and promiscuity of the P450 enzymes. Herein, we report that OxyBvan, the P450 enzyme that installs the first crosslink in vancomycin biosynthesis, is capable of catalyzing the formation of its conventional C-O-D bis-aryl ether bond in non-natural substrates and, furthermore, the formation of a second, novel linkage when D-Trp is incorporated at position 6. HR-MS/MS and isotope labeling studies indicate the second crosslink is formed between rings A and B, resulting in a novel GPA-type scaffold. OxyB is also capable of installing two crosslinks in kistamicin- and complestatin-like substrate peptides. These findings highlight the utility of OxyBvan in creating crosslinked GPA derivatives and provide clues regarding the unusual biosynthesis of kistamicin.  相似文献   

6.
The biosynthesis of the glycopeptide antibiotics, which include vancomycin and teicoplanin, relies on the interplay between the peptide‐producing non‐ribosomal peptide synthetase (NRPS) and Cytochrome P450 enzymes (P450s) that catalyze side‐chain crosslinking of the peptide. We demonstrate that sequential in vitro P450‐catalyzed cyclization of peptide substrates is enabled by the use of an NRPS peptide carrier protein (PCP)‐X di‐domain as a P450 recruitment platform. This study reveals that whilst the precursor peptide sequence influences the installation of the second crosslink by the P450 OxyAtei, activity is not restricted to the native teicoplanin peptide. Initial peptide cyclization is possible with teicoplanin and vancomycin OxyB homologues, and the latter displays excellent activity with all substrate combinations tested. By using non‐natural X‐domain substrates, bicyclization of hexapeptides was also shown, which demonstrates the utility of this method for the cyclization of varied peptide substrates in vitro.  相似文献   

7.
The human cytochrome P450 1A2 is an important drug metabolizing and procarcinogen activating enzyme. An experimental study found that a peripheral mutation, F186L, at ~26 ? away from the enzyme's active site, caused a significant reduction in the enzymatic activity of 1A2 deethylation reactions. In this paper, we explored the effects of this mutation by carrying out molecular dynamics simulations and structural analyses. We found that the long-range effects of the F186L mutation were through a change in protein flexibility and a collective protein motion that caused the main substrate access channel to be mostly closed in the mutant. Our work is the first that combined both access channel analysis and protein motion analysis to elucidate mechanisms of mutation-induced allostery in a CYP protein. Such structural modeling and analysis approaches may be applied to other CYP proteins and other enzymes with buried active sites and may help guide protein engineering and drug design.  相似文献   

8.
Although membrane environment is known to boost drug metabolism by mammalian cytochrome P450s, the factors that stabilize the structural folding and enhance protein function are unclear. In this study, we use peptide‐based lipid nanodiscs to “trap” the lipid boundaries of microsomal cytochrome P450 2B4. We report the first evidence that CYP2B4 is able to induce the formation of raft domains in a biomimetic compound of the endoplasmic reticulum. NMR experiments were used to identify and quantitatively determine the lipids present in nanodiscs. A combination of biophysical experiments and molecular dynamics simulations revealed a sphingomyelin binding region in CYP2B4. The protein‐induced lipid raft formation increased the thermal stability of P450 and dramatically altered ligand binding kinetics of the hydrophilic ligand BHT. These results unveil membrane/protein dynamics that contribute to the delicate mechanism of redox catalysis in lipid membrane.  相似文献   

9.
In this work we present an investigation on the behavior of microsomes containing human cytochrome P450 in cyclic voltammetry for drug detection. The microsomes are adsorbed on the surface of multi‐walled carbon nanotubes by drop‐casting. We demonstrate that the hydrophobic and highly electroactive surface of multi‐walled carbon nanotubes enables to distinguish more clearly the contributions in reduction peak current attributed to the enzymatic components of microsomes. Voltammetric measurements were performed under several experimental conditions with two cytochrome P450‐isoforms, 1A2 and 3A4. We show that the reduction current for the component of cytochrome P450‐microsome linearly increases in the presence of a substrate.  相似文献   

10.
The nocardicins are members of a class of monocyclic beta-lactam antibiotics produced by the actinomycete Nocardia uniformis subsp. tsuyamanesis (ATCC 21806). The oxime moiety in nocardicin A is required for full biological activity and is rare among natural products. A putative gene cluster encoding the enzymes of the nocardicin biosynthetic pathway has been identified. Among these, NocL shows similarity to cytochromes P450. We describe its heterologous expression and demonstrate its role in the formation of this unusual structural feature in nocardicin A. This is the first gene from this pathway to be expressed and its function established, and it is the first example of oxime formation from a primary amine in bacteria unambiguously linked to a cytochrome P450.  相似文献   

11.
Structural interactions that enable electron transfer to cytochrome‐P450 (CYP450) from its redox partner CYP450‐reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane‐bound functional complex to reveal interactions between the full‐length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome‐b5 (cyt‐b5), Arg 125 on the C‐helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein–protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.  相似文献   

12.
Enzyme-based electron-transfer reactions involved in the cytochrome P450 monooxygenase system were investigated in nanostructural reverse micelles. A bacterial flavoprotein, putidaredoxin reductase (PdR), was activated and shown to be capable of catalyzing the electron transport from NADH to electron-carrier proteins such as cytochrome b5 (tCyt-b5) and putidaredoxin (Pdx) in reverse micelles. Ferric tCyt-b5 in reverse micelles was effectively converted to its ferrous form by the exogenous addition of separately prepared reverse micellar solution harboring PdR and NADH. The fact that direct interactions of macromolecular proteins should be possible in the reverse micellar system encouraged us to functionalize a multicomponent monooxygenase system composed of the bacterial cytochrome P450cam (P450cam), putidaredoxin (Pdx), and PdR in reverse micelles. The successful camphor hydroxylation reaction catalyzed by P450cam was significantly dependent on the coexistence of Pdx, PdR, and NADH but not H2O2, suggesting that the oxygen-transfer reactions proceeded via a "monooxygenation" mechanism. This is the first report of a multicomponent cytochrome P450 system exhibiting enzymatic activity in organic media.  相似文献   

13.
A new detection mechanism has been developed for low molecular weight substrate binding to heme proteins based on resonance localized surface plasmon spectroscopy. Cytochrome P450 has strong electronic transitions in the visible wavelength region. Upon binding of a substrate molecule (e.g., camphor), the absorption band of cytochrome P450 shifts to shorter wavelength. The event of camphor binding to a nanoparticle surface modified with cytochrome P450 protein receptors is monitored using UV-vis spectroscopy. It is observed for the first time that the binding of the substrate molecules to the protein receptor induces a blue-shift in the localized surface plasmon resonance (LSPR) of the nanosensors. The coupling between the molecular resonance of the substrate-free and substrate-bound cytochrome P450 proteins and the nanoparticles' LSPR leads to a highly wavelength-dependent LSPR response. When the LSPR of the nanoparticles is located at a wavelength distant from the cytochrome P450 resonance, an average of approximately 19 nm red-shift is observed upon cytochrome P450 binding to the nanoparticles and a approximately 6 nm blue-shift is observed upon camphor binding However, this response is significantly amplified approximately 3 to 5 times when the LSPR of the nanoparticles is located at a slightly longer wavelength than the cytochrome P450 resonance, that is, a 66.2 nm red-shift upon cytochrome P450 binding and a 34.7 nm blue-shift upon camphor binding. This is the first example of the detection of small molecules binding to a protein modified nanoparticle surface on the basis of LSPR.  相似文献   

14.
Macrolides are a class of valuable antibiotics that include a macrolactone ring, at least one appended sugar unit, and, in most cases, additional hydroxyl or epoxide groups installed by cytochrome P450 enzymes. These functional groups contribute to structural diversification and serve to improve the bioactivity profiles of natural products. Here, we have characterized in vitro two P450 enzymes from the mycinamicin biosynthetic pathway of Micromonospora griseorubida. First, MycCI was characterized as the C21 methyl hydroxylase of mycinamicin VIII, the earliest macrolide form in the postpolyketide synthase tailoring pathway. Moreover, we established that optimal activity of MycCI depends on the native ferredoxin MycCII. Second, MycG P450 catalyzes consecutive hydroxylation and epoxidation reactions with mycinamicin IV as initial substrate. These reactions require prior dimethylation of 6-deoxyallose to mycinose for effective conversion by the dual function MycG enzyme.  相似文献   

15.
As a result of the very attractive pleiotropic properties of the heme-enzymes, three P450 cytochrome isoforms (P4501A2, P4502B4, P450SCC) have been utilized to identify a general optimal procedure to biodevice assembly for sensing a wide range of organic substances. The Langmuir-Blodgett films appears to yield the best stable working conditions as shown by UV-vis spectrophotometry, nanogravimetry, circular dichroism, and electrochemical characterization, to identify the ordered nanostructures of P450 cytochromes optimal for clozapine, styrene, and cholesterol sensing. Only in the presence of low purity grade protein, as in the case of P4501A2, a gel-matrix was needed to warrant the optimal clozapine sensing. By the combination of proper immobilization, transducer and nanostructured mutants of high-grade stable and selective P450-based sensors appear capable to detect the interaction with a wide range of organic substrates such as fatty acids, drugs, and toxic compounds.  相似文献   

16.
Conformational dynamics are thought to play an important role in ligand binding and catalysis by cytochrome P450 enzymes, but few techniques exist to examine them in molecular detail. Using a unique isotopic labeling strategy, we have site specifically inserted a (13)C-labeled unnatural amino acid residue, (13)C-p-methoxyphenylalanine (MeOF), into two different locations in the substrate binding region of the thermophilic cytochrome P450 enzyme CYP119. Surprisingly, in both cases the resonance signal from the ligand-free protein is represented by a doublet in the (1)H,(13)C-HSQC spectrum. Upon binding of 4-phenylimidazole, the signals from the initial resonances are reduced in favor of a single new resonance, in the case of the F162MeOF mutant, or two new resonances, in the case of the F153MeOF mutant. This represents the first direct physical evidence for the ligand-dependent existence of multiple P450 conformers simultaneously in solution. This general approach may be used to further illuminate the role that conformational dynamics plays in the complex enzymatic phenomena exhibited by P450 enzymes.  相似文献   

17.
Biaryl-bridged cyclic peptides comprise an intriguing class of structurally diverse natural products with significant biological activity. Especially noteworthy are the antibiotics arylomycin and its synthetic analogue G0775, which exhibits potent activity against Gram-negative bacteria. Herein, we present a simple, flexible, and reliable strategy based on activating-group-assisted catalytic oxidative coupling for assembling biaryl-bridged cyclic peptides from natural amino acids. The synthetic approach was utilized for preparing a number of natural and unnatural biaryl-bridged cyclic peptides, including arylomycin/G0775 and RP 66453 cyclic cores.  相似文献   

18.
Knowledge regarding the regulation of hepatic cytochrome P450 (P450) is crucial to the fields of drug therapy and drug development, as well as to our understanding of the mechanisms underlying the metabolic activation of toxic and carcinogenic compounds. P450 is a membrane-anchored protein that shows a variety of interaction with membrane phospholipids, which affect the membrane topology and catalytic activities of the protein. In particular, anionic phospholipids, nonbilayer forming lipids, and the degree of saturation of the lipid fatty acyl chain play important roles in the functional regulation of P450, as well as in the bilayer structure of the membrane. However, despite the importance of phospholipids in the regulation of P450s, the interaction of the protein with membrane phospholipids, and the membrane properties induced by phospholipids which regulate P450, are unclear. In this review, we describe the effect of the physicochemical properties of the phospholipid constituents of biological membranes on hepatic P450 catalytic activity, membrane insertion (and/or penetration), and structural changes.  相似文献   

19.
AurH is a unique cytochrome P450 monooxygenase catalyzing the stepwise formation of a homochiral oxygen heterocycle, a key structural and pharmacophoric component of the antibiotic aureothin. The exceptional enzymatic reaction involves a tandem oxygenation process including a regio- and stereospecific hydroxylation, followed by heterocyclization. For the structural and biochemical basis of this unparalleled sequence, four crystal structures of AurH variants in different conformational states and in complex with the P450 inhibitor ancymidol were solved, which represent the first structures of the CYP151A group. Structural data in conjunction with computational docking, site-directed mutagenesis, and chemical analyses unveiled a switch function when recognizing the two substrates, deoxyaureothin and the hydroxylated intermediate, thus allowing the second oxygenation-heterocyclization step. Furthermore, we were able to modify the chemo- and regioselectivity of AurH, yielding mutants that catalyze the regioselective six-electron transfer of a nonactivated methyl group to a carboxylic acid via hydroxyl and aldehyde intermediates.  相似文献   

20.
Cytochrome b5 (cyt b5) is a membrane-anchored electron-carrier protein containing a heme in its soluble domain. It enhances the enzymatic turnover of selected members of the cytochrome P450 superfamily of catabolic enzymes, localized in the endoplasmic reticulum of liver cells. Remarkably, its alpha-helical membrane-anchoring domain is indispensable for the cyt b5/cyt P450 interaction. Here, we present the first solid-state NMR studies on holo-cyt b5 in a membrane environment, namely, macroscopically oriented DMPC:DHPC bicelles. We have presented approaches to selectively investigate different domains of the protein using spectral editing NMR techniques that utilize the unique motional properties of each domain. Two-dimensional 1H-15N HIMSELF spectra showed PISA-wheel patterns reporting on the structure and dynamics of the membrane anchor of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号