首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this work we report the near infrared to visible upconversion luminescence of Er3+ ions in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure. The microstructure consists of alternating 2-μm-thick lamellae of calcia-stabilized zirconia (CaSZ) and calcium zirconate (CaZrO3) single crystals. Er3+ ions enter both phases but at a higher concentration in CaSZ. Wavelength selective excitation along the 4I15/24I9/2 absorption band allows to distinguish the upconverted emission from Er3+ sites in the two eutectic phases. In the CaZrO3 phase the upconversion emission spectrum is dominated by an intense green emission characterized by sharp (2H11/2,4S3/2) levels together with a more weak red emission from 4F9/2 level. In the CaSZ phase, a broad green and red emissions occur with an enhancement of the red emission from level 4F9/2. These upconverted emissions are attributed to a two photon process. The excitation wavelength dependence of the upconverted luminescence together with its time evolution after infrared pulsed excitation suggest that energy transfer upconversion processes are responsible for the upconversion luminescence.  相似文献   

2.
In this paper, we present the photoluminescence properties of Pr3+-, Sm3+- and Dy3+-doped germanate glasses and glass ceramics. From the X-ray diffraction measurement, the host glass structure was determined. These glasses have shown strong absorption bands in the near-infrared (NIR) region. Compared to Pr3+-, Sm3+- and Dy3+-doped glasses, their respective glass ceramics have shown stronger emissions due to the Ba2TiGe2O8 crystalline phase. For Pr3+-doped glass and glass ceramic, emission bands centered at 530 nm (3P03H5), 614 nm (3P03H6), 647 nm (3P03F2) and 686 nm (3P03F3) have been observed with 485 nm (3H43P0) excitation wavelength. Of them, 647 nm (3P03F2) has shown bright red emission. Emission bands of 4G5/26H5/2 (565 nm), 4G5/26H7/2 (602 nm) and 4G5/26H9/2 (648 nm) for the Sm3+:glass and glass ceramic, with excitation at 6H5/24F7/2 (405 nm) have been recorded. Of them, 4G5/26H7/2 (602 nm) has shown a bright orange emission. With regard to the Dy3+:glass and glass ceramic, a bright fluorescent yellow emission at 577 nm (4F9/26H13/2) has been observed, apart from 4F9/26H11/2 (667 nm) emission transition with an excitation at 454 nm (6H15/24I15/2) wavelength. The stimulated emission cross-sections of all the emission bands of Pr3+, Sm3+ and Dy3+:glasses and glass ceramics have been computed based on their measured full-width at half-maxima (FWHM, Δλ) and lifetimes (τm).  相似文献   

3.
A luminescent material β-Na(Y1.5Na0.5)F6 doped with Tm3+ was synthesized by a solid-state reaction method for a steady phosphor of blue upconversion. Under the 671 nm laser excitation, the green emission band of 511 nm due to the 1D23H5 transition is obtained for the first time, while the ultraviolet emission band is also observed at 368 nm, associated with the 1D23H6 transition. Especially, a wide band of blue emissions is obtained at the wavelength region of 440-490 nm, originated mainly from the 1D23F4 (450 nm) and 1G43H6 (471-487 nm) transitions, which have potential application in tunable solid-state blue laser of Tm3+. The upconversion mechanism is explored in terms of the energy-level structures of Tm3+ ion and the power dependence of upconverted emission intensity, which is believed to be performed by excited-state absorption.  相似文献   

4.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

5.
This paper reports the luminescence potential of the dysprosium ion (Dy3+)-doped (varying contents from 0.1 to 1.0 mol%) magnesium borate glasses prepared by the melt-quenching method. As-quenched samples were characterized systematically to determine the effects of various Dy3+ contents on their structure, physical and optical traits. The Judd−Ofelt (J−O) intensity parameters (Ω2, Ω4, Ω6) and radiative properties of the best sample (with 0.7 mol% of Dy3+ doping) was evaluated to complement the experimental optical data. The studied glasses revealed three luminescence emission peaks at 382 nm (4F9/26H15/2, intense Blue), 572 nm (4F9/26H15/2, intense Yellow) and 661 nm (4F9/26H11/2, weak Red) under the excitation wavelength of 347 nm. The emission intensity was first increased up to the Dy3+ content of 0.7 mol% and then quenched. The observed luminescence intensity quenching was due to the resonant energy transfer from the excited state to the neighbouring ground state of Dy3+. The obtained high value of Ω2 signified the strong degree of covalency between the Dy3+ and ligand environment. The optimum glass sample (with 0.7 mol% of Dy3+) showed higher values of the branching ratio and stimulated emission cross-cross section for the 4F9/26H15/2 (yellow) emission transition, indicating its potential as bright yellow luminescent material and high gain visible laser applications.  相似文献   

6.
Near infrared-visible upconversion in Er3+ doped orthorhombic PbF2 compound is investigated. It is experimentally observed that the red emission intensity increases monotonously with Er3+ concentration increase, while the green emission intensity first increases and then decreases. Based on the rate-equation, the energy transfers involved in the upconversion processes have been explored. It is shown that due to the different multipolar nature for the energy transfer processes of 2H11/2 (4S3/2)+4I15/24I9/2+4I13/2 and 4I11/2+4I11/24F7/2+4I15/2, the green and red upconversion emissions depend on Er3+ concentration in different ways. The theoretical results are in good agreement with the experimental observation. It is shown that the upconverted emission bands can be tuned by controlling Er3+ concentration in orthorhombic PbF2 compound, which has many photonic applications under NIR excitation.  相似文献   

7.
A new antimony-based glass system (K2O-B2O3-Sb2O3) having low phonon energy (about 600 cm−1) doped with Sm3+ ions has been developed. Infrared reflection spectroscopic (IRRS) studies have been employed to establish its low phonon energy. Ultraviolet-Visible-near infrared (UV-Vis-NIR) absorption and photoluminescence upconversion properties with the spectrochemistry of the 15K2O-15B2O3-70Sb2O3 (mol%) glasses have been studied doping with different concentrations (0.1-1.0 wt%) of Sm2O3. UV-Vis-NIR absorption band positions have been justified with quantitative calculation of nephelauxetic parameter and covalent bonding characteristics of the host. NIR to visible upconversion has been investigated by exciting at 949 nm at room temperature. Three upconverted bands originating from the 4G5/26H5/2, 4G5/26H7/2 and 4G5/26H9/2 transitions are found to be centered at 566 (green, weak), 602 (orange, weak) and 636 (red, remarkably strong) nm, respectively. These bands have been explained from the evaluation of the absorption, normal (downconversion) fluorescence and excitation spectra. The upconversion processes have been explained by the excited state absorption (ESA), energy transfer (ET) and cross-relaxation (CR) mechanisms involving population of the metastable (storage) energy level (4G5/2) by multiphonon deexcitation effect. It is evident from the IRRS study that the upconversion phenomena are expedited by the low multiphonon relaxation rate in antimony glasses owing to their low phonon energy (602 cm−1, the main and highest intensity Sb-O-Sb stretching band) which is very close to that of fluoride glasses (500-600 cm−1).  相似文献   

8.
Several studies showed the interesting properties of trivalent lanthanide ions when doped in various types of glasses. Optical and physical properties of lithium magnesium borate glasses doped with Dy3+ then with Sm3+ ions were determined by measuring their absorption and luminescence spectra in the visible region. The absorption spectra of Dy3+ showed eight absorption bands with hypersensitive transition at 1265 nm (6H15/26F11/2-6H9/2) and three PL emission bands at 588 nm (4F9/26H15/2), 660 nm (4F9/26H13/2) and 775 nm (4F9/26H11/2). Regarding the Sm3+, nine absorption bands were observed with hypersensitive transition at 1237 nm (6H5/26F7/2); the PL spectrum showed four prominent peaks at 4G5/26H5/2 (yellow color), 4G5/26H7/2 (bright orange color), 4G5/26H9/2 (orange reddish color) and 4G5/26H11/2 (red color), respectively. Finally, a series of physical parameters such as the oscillator strengths, refractive index, ions concentration, Polaron radius and other parameters were calculated for each dopant.  相似文献   

9.
Effect of composition on the structure, spontaneous and stimulated emission probabilities of various 1.0 mol% Tm2O3 doped (1−x)TeO2+(x)WO3 glasses were investigated using Raman spectroscopy, ultraviolet-visible-near-infrared (UV/VIS/NIR) absorption and luminescence measurements.Absorption measurements in the UV/VIS/NIR region were used to determine spontaneous emission probabilities for the 4f-4f transitions of Tm3+ ions. Six absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level were observed. Integrated absorption cross-section of each band except that of 3H5 level was found to vary with the glass composition. Luminescence spectra of the samples were measured upon 457.9 nm excitation. Three emission bands centered at 476 nm (1G43H6 transition), 651 nm (1G43H4 transition) and 800 nm (1G43H5 transition) were observed. Spontaneous emission cross-sections together with the luminescence spectra measured upon 457.9 nm excitation were used to determine the stimulated emission cross-sections of these emissions.The effect of glass composition on the Judd-Ofelt parameters and therefore on the spontaneous and the stimulated emission cross-sections for the metastable levels of Tm3+ ions were discussed in detail. The effect of temperature on the stimulated emission cross-sections for the emissions observed upon 457.9 nm excitation was also discussed.  相似文献   

10.
Lead containing calcium zinc sodium fluoroborate (LCZSFB) glasses doped with different concentrations of trivalent dysprosium ions were prepared and investigated by the XRD, FTIR, optical absorption, photoluminescence and decay curve analysis. The experimentally determined oscillator strengths have been determined by measuring the areas under the absorption peaks and the Judd–Ofelt (J–O) intensity parameters were calculated using the least squares fit method. From the evaluated J–O parameters the radiative transition probability rates, radiative lifetimes and branching ratios were calculated for 4F9/2 excited level. Room temperature photoluminescence spectra for different concentrations of Dy3+-doped LCZSFB glasses were obtained by exciting the glass samples at 386 nm. The intensity of Dy3+ emission spectra increases with increasing concentration of 0.1, 0.25, 0.5 and 1.0 mol% and beyond 1.0 mol% the concentration quenching is observed. The measuring branching ratios are reasonably high for transitions 4F9/26H15/2 and 6H13/2, suggesting that the emission at 484 and 576 nm, respectively, can give rise to lasing action in the visible region. From the visible emission spectra, yellow–blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The lifetimes of 4F9/2 metastable state for the samples with different concentrations were also measured and discussed.  相似文献   

11.
A series of Dy3+-doped calcium magnesium silicate phosphors: CaMgSi2O6:Dy3+, Ca2MgSi2O7:Dy3+, and Ca3MgSi2O8:Dy3+ with white long-lasting afterglow were prepared and investigated. The characteristic intra-configurational 4f emissions of Dy3+ were observed in the emission spectra as well as the afterglow spectra under ultraviolet excitation. The combination of the 480 nm blue emission corresponding to the 4F9/26H15/2 transition and the 575 nm yellow emission corresponding to the 4F9/26H13/2 transition yielded white-light emission. The white-coloured afterglow emission can last more than 1 h for most of the samples under study. The concentration dependence of the ratio of the yellow emission intensity with blue emission intensity was also examined and found to be varied for the different hosts. The thermoluminescence spectra above room temperature are employed for the discussion of the origin of the traps and the mechanism of the persistent luminescence.  相似文献   

12.
C. Joshi  S.B. Rai 《Optics Communications》2011,284(19):4584-4587
Optical absorption and photoluminescent properties of Ho3+/Yb3+ co-doped tellurite and zinc tellurite glasses are investigated. The effect of zinc oxide as a modifier on the luminescence properties of above mentioned samples has been explored. Two intense upconversion emission bands centered at 546 (5F4 + 5S2 → 5I8) and 660 nm (5F5 → 5I8) are observed on excitation with 976 nm diode laser. Zinc oxide acts as a quencher for 976 nm excited upconversion emission. The up and downconversion emission spectra are recorded with 532 nm excitation source also. In this case zinc oxide improves the up and downconversion emissions. A large enhancement in upconversion intensity has been observed when Ho3+ ion is co-doped with Yb3+ ion. The dependence of upconversion intensities on excitation power and on temperature has also been studied. The power dependence study shows a quadratic dependence of the fluorescence intensity on the excitation power while a decrement in emission intensity of all the transitions at different rates with increase in temperature is observed in temperature dependence study. The possible mechanisms are also discussed in order to understand the upconversion and energy transfer processes.  相似文献   

13.
Trivalent dysprosium ions (Dy3+) doped strontium molybdate (SrMoO4) phosphors were synthesized by solid-state reaction and their photoluminescence (PL) properties were investigated. X-ray powder diffraction (XRD) analysis confirmed the formation of SrMoO4:Dy3+. PL measurements indicated that the phosphor exhibited intense emission at 482, 490 (4F9/26H15/2) and 575 nm (4F9/26H13/2) under UV excitation. The effect of the doping concentration of Dy3+in SrMoO4:Dy3+ on the PL was investigated in detail. Na+ ion was a good charge compensator for SrMoO4:Dy3+.  相似文献   

14.
Temperature quenching characteristics of infrared-to-visible frequency upconversion in ytterbium-sensitized erbium-doped tellurite glasses under 970 nm excitation were reported. Intense upconversion emissions around 530, 545 and 657 nm corresponding to the 2H11/2, 4S3/2 and 4F9/2 transitions to the 4I15/2 ground state were observed. The green emission around 530 nm presents continuous increase with increase of temperature. While the emission around 545 nm increases from 20 to 80 K and reaches the largest value around 80 K, then decreases from 80 to 300 K. The dependence of intensity characteristics on temperature was systematically analyzed by rate equations and a simple three-level system. In addition, the temperature dependence on the multiphonon relaxation rates (2H11/2, 4S3/24F9/2) fitted with 4 phonons of the 760 cm−1 was presented.  相似文献   

15.
A NIR excitation of Er3+ doped Lithium modified tellurite (Li:TeO2) glass results in antistokes fluorescent emission near 380, 530, 551 and 654 nm (ultraviolet, green and red regions) in addition to NIR Stokes emission. The antistokes emissions are ascribed to transition from the excited 4G11/2, 4S3/2(2H11/2) and 4F9/2 levels in Er3+. The excitation involves three and two incident photons. On excitation with the green laser line at 532 nm also leads to similar emissions. The mechanisms involved in these processes are discussed on the basis of the known energy level diagram and the upconversion efficiency has been calculated. Lifetime of the 4S3/2 level has been measured. The temperature dependence of the upconversion process has also been investigated.  相似文献   

16.
The luminescence properties of Er3+ doped alkali tellurite [ TeO2-M2O (M=Li, Na and K)] glasses are investigated. Infrared to visible upconversion emissions are observed at 410, 525, 550 and 658 nm using 797 nm excitation. These bands are assigned to the 2H9/2  →4I15/2, 2H11/2  →4I15/2, 4S3/2  →4I15/2, 4F9/2  →4I15/2 transitions of Er3+ respectively. Detailed study reveals that the 2H9/2  →4I15/2 transition at 410 nm involves a three-step process while the other transitions involve two-steps. Excitation with 532 nm radiation gives additional bands at 380, 404, 475 and 843 nm wavelengths due to the 4G11/2  →4I15/2, 2P3/2  →4I13/2, 2P3/2  →4I11/2, and 4S3/2  →4I13/2 transitions, respectively, along with the bands observed on NIR excitation. The fluorescence yield is found to be largest for the TeO2-Na2O glass. The lifetime of the 4S3/2 level has been measured for all the three cases and used to explain the upconversion mechanisms. The fluorescence intensity ratio corresponding to the two thermally coupled levels (2H11/2, 4S3/2) has been used to estimate the temperature of the glass. It is observed that the temperature sensing capacity of TeO2-Li2O glass is better than the other two glasses.  相似文献   

17.
A series of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite (TPZL) glasses pumped by a 980 nm laser diode (LD) were demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Effects of PbO content on the thermal stability, structure and upconversion properties of Tm3+/Yb3+ co-doped TPZL glasses had been investigated. The efficient visible upconversion fluorescences corresponding to the 1G43H6, 1G43F4 and 3H43H6 transitions of Tm3+ were observed under 980 nm excitation. The upconversion intensities of blue, red and near infrared emissions in Tm3+/Yb3+ co-doped TPZL glasses were obviously enhanced with increasing PbO content. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms had been evaluated by a proper rate equation model. Population density in different levels and coefficients of the energy transfer rate CDi (i=2, 4, 6) between Tm3+ and Yb3+ were estimated by fitting the simulated curves to the measured ones. The obtained three energy transfer coefficients CD2, CD4, and CD6 were determined to be 5.7×10−17, 1.3×10−16 and 8.6×10−17 cm3/s, respectively.  相似文献   

18.
Upconversion luminescence has been studied for Er3+ in a germanate-oxyfluoride and a tellurium-germanate-oxyfluoride transparent glass-ceramic using 800 nm excitation. Significantly increased upconversion luminescence was observed from transparent glass-ceramics compared with that from their corresponding as-prepared glasses. In addition to a strong green emission centered at 545 nm from 4S3/2 state and a weaker red emission centered at 662 nm from 4F9/2 state generally seen from Er3+-doped glasses, a violet emission centered at 410 nm from 2H9/2 state and a near-ultra-violet emission centered at 379 nm from 4G11/2 state were also observed from transparent glass-ceramics. The upconversion luminescence of Er3+ ions in transparent glass-ceramics revealed sharp Stark-splitting peaks generally seen in a crystal host. The increased upconversion efficiency is attributed to the decreased effective phonon energy and the increased energy transfer between excited ions when Er3+ ions were incorporated into the precipitated β-PbF2 nanocrystals.  相似文献   

19.
The spectroscopic characteristics and fluorescence dynamics for Yb3+/Ho3+:NaY(WO4)2 crystal were investigated. The parameters of oscillator strengths, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and the stimulated emission cross sections have been calculated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The energy transfer efficiency from Yb3+ to Ho3+ was 65.85%. The green emission (530-570 nm) corresponding to (5F4, 5S2)→5I8 transition, red emission (640-670 nm) due to 5F55I8 transition and NIR emission (740-770 nm) attributed to (5F4, 5S2)→5I7 transition were observed on 974 nm excitation at room temperature. Under low pump power, the intensity of green light emission is weaker than that of the red light, while under high pump power, the case is on the contrary. The upconversion is based on the two-photon process either the energy transfer from Yb3+ ions or by the excited state absorption. The proposed mechanisms of upconversion emissions were provided.  相似文献   

20.
Ce3+ and Dy3+ activated Li2CaGeO4 phosphors were prepared by a solid-state reaction method, and characterized by XRD (X-ray diffraction) and photoluminescence techniques. The characteristic emission bands of Dy3+ due to 4F9/26H15/2 (blue) and 4F9/26H13/2 (yellow) transitions were detected in the emission spectra of Li2CaGeO4:Dy3+. Ce3+ broad band emission was observed in Li2CaGeO4:Ce3+ phosphors at 372 and 400 nm due to 5d→4f transition when excited at 353 nm. Co-doping of Ce3+ enhanced the luminescence of Dy3+ significantly and concentration quenching occurs when Dy3+ is beyond 0.04 mol%. White-light with different hues can be realized by tuning Dy3+ concentration in the phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号