首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Surface wetting is an important and relevant phenomenon in several different fields. Scientists have introduced a large number of applications where special surface wetting could be exploited. Here, we study wetting phenomena on high- and low-adhesive superhydrophobic liquid flame spray (LFS)-generated TiO2 coatings on paper and pigment-coated board substrates using water–ethanol solution as a probe liquid. Submicrometer-scale air gaps, which exist on superhydrophobic surfaces below the liquid droplets, were more stable with the ethanol increment than the larger-scale micrometric air gaps. With the droplet ethanol concentration of 15 wt%, static contact angle as high as 155?±?2° was measured on the LFS–TiO2-coated board. Transition from the low-adhesive wetting state to the high-adhesive state was demonstrated on the LFS–TiO2-coated paper. The LFS method enables efficient roll-to-roll production of surfaces with special wetting properties on economically viable board and paper substrate materials.  相似文献   

2.
Titanium dioxide (TiO2) is a photoactive material with various interesting and useful properties. One of those is the perfect wettability of TiO2 surface after ultraviolet (UV) illumination. Wettability of a solid surface plays an important role in the field of printing, coating, and adhesion among others. Here we report on a superhydrophobic and photoactive liquid flame spray (LFS) generated TiO2 nanoparticle coating that can be applied on web-like materials such as paper and board in one-step roll-to-roll process. The LFS TiO2 nanoparticle coated paper and board were superhydrophobic instantly after the coating procedure because of spontaneously accumulated carbonaceous overlayer on TiO2, and thus there was no need for any type of separate hydrophobization treatment. The highly photoactive LFS TiO2 nanoparticle coating could be converted steplessly from superhydrophobic to superhydrophilic by UV-illumination, and the coating gave strong response to natural daylight illumination even in the shade. The superhydrophobic LFS TiO2 coated surface can be used as an intelligent substrate, where photo-generated hydrophilic patterns guide the fluid setting and figure formation. Our study reveals that the wettability changes on the LFS TiO2 surface were primarily caused by the photocatalytic removal of the carbonaceous material from TiO2 during the UV-illumination and spontaneous accumulation of the carbonaceous material on the surface of the metal oxide during storage in the dark. The latter mechanism was found to be a temperature activated process which could be significantly speeded up by heat treatment. If other mechanisms such as surface oxidization, increment of hydroxyl groups, or charge separation played a role in the wetting phenomena on TiO2, their effect was rather secondary as the removal and accumulation of the carbonaceous material dominated the wettability changes on the surface. Our study gives valuable information on the complex issue of photo-induced wettability changes on TiO2.  相似文献   

3.
Licciulli  A.  Calia  A.  Lettieri  M.  Diso  D.  Masieri  M.  Franza  S.  Amadelli  R.  Casarano  G. 《Journal of Sol-Gel Science and Technology》2011,60(3):437-444
The application of photocatalytic coatings on stone has been investigated for providing surface protection and self-cleaning properties. Sol–Gel and hydrothermal processes were used to synthesise TiO2 colloidal suspensions and coatings with enhanced photocatalytic activity without any thermal curing of the coated stone. The stone was a porous limestone (apulian sedimentary carbonatic, calcite stone). Films and powders prepared from TiO2 sols were studied using X-ray diffraction to evaluate the microstructure and identify rutile and anatase phases. A morphological and physical characterisation was carried out on coated and uncoated stone to establish the changes of appearance, colour, water absorption by capillarity and water vapour permeability. The photocatalytic activity of the coated surface was evaluated under UV irradiation through NO x and organics degradation tests. The performances of the synthesised TiO2 sols were compared with commercial TiO2 suspension. Since the coating doesn’t need temperature treatments for activating the photocatalytic properties, the nano-crystalline hydrothermal TiO2 sols seem good candidate for coating applications on stone that cannot be annealed after the coating application.  相似文献   

4.
《Supramolecular Science》1998,5(5-6):599-602
Surface pressure–area (π–A) isotherm characteristics of 5,10,15-(4-hydroxyphenyl)-20-(4-hexadecyloxyphenyl) porphyrin monolayers on both the water and TiO2 hydrosol subphases, the UV–vis absorption and fluorescence spectra of the monolayers deposited onto CaF2 substrates are investigated. π–A isotherms find that the porphyrin ring extends to lie more flat on a TiO2 hydrosol surface than on a water surface. The UV–vis absorption spectra of the deposited monolayers prove that the porphyrin TiO2 nanoparticle heterostructure assembly is formed, in which the J-aggregated effect of porphyrin is weakened, comparing with that in the monolayer deposited from water subphase. The fluorescence spectra show that the fluorescent emission quenching by the photoinduced electron transfer from the excited porphyrin molecule to TiO2 nanoparticle, occurs under excitation in the Soret band region of porphyrin.  相似文献   

5.
Template two step electrodeposition method and atomic layer deposition were used to synthesize copper nanowires of varied length (1.2 to 26.2 μm) and copper nanowires coated with titanium dioxide. As a result of the atomic layer deposition of TiO2, coated nanowires demonstrated an up to 10-fold decrease in the wetting angle, compared with uncoated nanowires. It was found the dissipation rate is substantially higher for nanowires coated by the atomic layer deposition method (100 s) as compared with the uncoated copper nanowires (400 s), which assumes the positive properties of water propagation along the surface, necessary for improving the heat transfer. It was also found that the water contact angle for uncoated nanowires and those coated with TiO2 by the atomic layer deposition (ALD) gradually increases as the samples are kept in air. A gradual increase in wettability was also observed for smooth silicon wafers coated by ALD of TiO2, which were exposed to air. On the coated silicon substrates, the wetting angle gradually increased from 10° to approximately 56° in the course of four days. In addition, it was shown that copper nanowires coated with TiO2 by the atomic layer deposition method have an excellent corrosion resistance, compared with uncoated nanowires, when brought in contact with air and water.  相似文献   

6.
A novel approach to synthesize Au/TiO2 nanostructures with interesting optical properties is presented and discussed. It is based on the nanoparticle “cold” or “hot” nanosoldering occurring when two water suspensions of Au and TiO2 nanoparticles are merely mixed at room temperature or laser irradiated after mixing.Thanks to the high fraction and mutual reactivity of surface species, immediately after the mixing process, the encounters between Au and TiO2 nanoparticles in liquid phase are enough for “cold” nanosoldering of gold nanoparticles onto TiO2 nanoparticles to occur. The optical characterizations show that this fast process (timescale less than 1 min) is followed by a slower process, attributable to some change of the Au nanoparticles. This latter process is significantly accelerated by the 532 nm laser light illumination. The structural and optical properties of “cold” and “hot” nanosoldered Au-TiO2 nanoparticles were investigated by TEM, UV-vis and fluorescence spectroscopies.Interesting optical limiting response was detected at laser fluences above 0.8 J/cm2. The nature of the nonlinear effect was investigated by the Z-scan technique, determining both the nonlinear absorption coefficient and the refraction index. Such interesting non-linear optical properties are worth to be tailored for specific applications.  相似文献   

7.
In this paper, the coatings with friction-reducing properties were investigated using both sol–gel and self-assembling techniques. The thin film of TiO2 was firstly prepared on glass substrates via a sol–gel method, followed by calcinating at 480 °C. The films of fatty acid were then deposited on the TiO2 surface to obtain a dual-layer film. The contact angle measurement and FT IR spectroscopy were used to determine the wetting behavior and chemical structure of films, respectively. The friction-reducing behavior of films sliding against a steel ball was examined on a macro friction and wear tester. It is found that fatty acid is strongly adsorbed on sol–gel derived TiO2 surface. Good friction-reducing behavior is observed for the glass substrate after duplex surface-modification with TiO2 surface obtained by sol–gel method and top layer of fatty acid.  相似文献   

8.
In order to reach an antibacterial, photocatalytic, and hydrophilic coating, commercial grade polyurethane (CPU) resin was modified with silver ion exchanged montmorillonite/TiO2 nanocomposite in various montmorillonite to TiO2 nanoparticle ratios. To characterize the prepared nanocomposites and coatings, X-ray diffraction patterns, FTIR and UV–Vis spectroscopy and SEM images were used. The modified commercial grade polyurethane coatings containing nanocomposites show better properties, including hydrophilicity, degradation of organic pollutants, antibacterial activity and water resistivity, compared to unmodified commercial grade polyurethane coatings. The water droplet contact angle of unmodified CPU coating was 70°, however it decreased to lower than 10° in modified CPU coatings after 24 h LED lamp irradiation. Decolorization efficiency of malachite green dye solution by the use of modified CPU coatings achieved up to 70% after 5 h LED lamp illumination, compared to less than 5% for unmodified CPU coatings. Modified CPU coatings also showed significant water resistivity and antibacterial properties.  相似文献   

9.
Surface‐initiated, oligomeric assemblies of ruthenium(II) vinylpolypyridyl complexes have been grown within the cavities of mesoporous nanoparticle films of TiO2 by electrochemically controlled radical polymerization. Surface growth was monitored by cyclic voltammetry as well as UV/Vis and X‐ray photoelectron spectroscopy. Polymerization occurs by a radical chain mechanism following cyclic voltammetry scans to negative potentials where reduction occurs at the π* levels of the polypyridyl ligands. Oligomeric growth within the cavities of the TiO2 films occurs until an average of six repeat units are added to the surface‐bound initiator site, which is in agreement with estimates of the internal volumes of the pores in the nanoparticle films.  相似文献   

10.
The outstanding advantages of N-halamine materials over other antimicrobial materials are their durable and rechargeable antimicrobial properties, as well as their efficacies in inactivating a broad spectrum of pathogens. Theoretically, the oxidative chlorine of antimicrobial cotton coated with N-halamine hydantoin diol can be restored upon loss of its biocidal efficacy after exposure to ultraviolet light. In this work nano-titania particles were added into the coating solutions containing N-halamine diol and 1,2,3,4-butanetetracarboxylic acid (BTCA), and the coatings were applied to produce antimicrobial cellulose with improved UV stability. The treated cotton fabrics were characterized by FT-IR, SEM, XRD, and XPS. The effects of the coatings on tensile strength and wrinkle recovery angle were investigated. Biocidal efficacies of fabrics coated with hydantoin diol and diol/TiO2 against Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895) were determined using a modified AATCC 100-1999 method and showed excellent antimicrobial properties against these two bacterial species within a brief contact times. It was found that the addition of Nano-TiO2 in the antimicrobial coatings, especially rutile titanium dioxide, could improve the UV light stability of the chlorinated fabrics coated with hydantoin diol significantly. The UV light stability of N-halamine coatings were enhanced with increasing amounts of rutile TiO2.  相似文献   

11.
Surface functionalization of semiconductor nanoparticles plays a significant role in the manipulation of the nanoparticle physicochemical properties and diverse applications. Conventional points of anchor involve mercapto, carboxyl and phenol moieties, forming largely nonconjugated interfacial linkages. In this personal account, we summarize recent progress in surface functionalization of semiconductor nanoparticles with olefin and acetylene derivatives, where the formation of conjugated interfacial bonds leads to ready manipulation of the nanoparticle optical and electronic properties, by using Si and TiO2 nanoparticles as the illustrating examples. Finally, a perspective is included where the promises and challenges of structural engineering of semiconductor nanoparicles are highlighted.  相似文献   

12.
In this paper, we present the design and preparation of a type of high-strength SiO2/TiO2 AR coatings used in solar glass by dip coating method. The average transmittance of glass coated in this way is increased by more than 6% in the wavelength from 400 to 800 nm, which fits well with the theoretical expectation. The mechanical performance and atmospheric exposure tests prove that the coatings have scratch resistance, erosion resistance and long-time stability. The AFM morphology shows that the surface of the coating is very smooth with the experimental result of RMS roughness 0.306 nm. These phenomena indicate that the SiO2/TiO2 AR coatings have high potential commercialization for low-cost solar glass.  相似文献   

13.
A novel TiO2 nanoparticle self-assembly membrane was prepared based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride)/poly(vinylidene fluoride) (SMA/PVDF) blend membrane. TiO2 nanoparticle solution was beforehand prepared via the controlled hydrolysis of titanium tetraisopropoxide. The diameter (10 nm or less) and anatase crystal structure were analyzed using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The SMA/PVDF blend membranes prepared by the phase inversion method were immersed into the TiO2 nanoparticle solution for a week to produce TiO2 self-assembly membranes. The chemical compositions in membrane surface were analyzed by X-ray photoelectron spectroscopy (XPS). The membrane morphologies were measured by scanning electron microscopy (SEM). Finally, the membrane hydrophilicity, protein anti-fouling property and the molecular weight cutoff (MWCO) were characterized by water contact angle measurement, static protein absorption and filtration experiments, respectively. It is demonstrated that, in comparison to PVDF/SMA blend membrane, the permeability and anti-fouling ability of TiO2 self-assembly membranes were significantly improved.  相似文献   

14.
The wetting behavior of solid surfaces can be altered dramatically by introducing surface roughness on the nanometer scale. Some of nature's most fascinating wetting phenomena are associated with surface roughness; they have inspired both fundamental research and the adoption of surface roughness as a design parameter for man-made functional coatings. So far the attention has focused primarily on macroscopic surfaces, but one should expect the wetting properties of colloidal particles to be strongly affected by roughness, too. Particle wettability, in turn, is a key parameter for the adsorption of particles at liquid interfaces and for the industrially important use of particles as emulsion stabilizers; yet, the consequence of particle roughness for emulsion stability remains poorly understood. In order to investigate the matter systematically, we have developed a surface treatment, applicable to micrometer-sized particles and macroscopic surfaces alike, that produces surface coatings with finely tunable nanoscale roughness and identical surface chemistry. Coatings with different degrees of roughness were characterized with regard to their morphology, charging, and wetting properties, and the results were correlated with the stability of emulsions prepared with coated particles of different roughness. We find that the maximum capillary pressure, a metric of the emulsions' resistance to droplet coalescence, varies significantly and in a nonmonotonic fashion with particle roughness. Surface topography and contact angle hysteresis suggest that particle roughness benefits the stability of our emulsions as long as wetting occurs homogeneously (Wenzel regime), whereas the transition toward heterogeneous wetting (Cassie-Baxter regime) is associated with a loss of stability.  相似文献   

15.
The superhydrophilic surface without ultraviolet light irradiation is obtained only through the modulation of annealing process on surface morphology of TiO2 coating. Meantime, the influence of annealing temperature on the structural, optical and wetting properties of the TiO2 coating is investigated. As the increase of annealing temperature, the root mean square roughness of the TiO2 coating surface increases from 8.6 to 30.7 nm and the nanoparticle surface is formed. Meanwhile, the refractive index increases linearly from 2.02 to 2.22, the thickness decreases from 120 to 82 nm, the transmittance varies from 90 to 62 %, and it is more important the WCA is reduced from 68° to 0°. Furthermore, through analyzing the thickness variation, it is illustrated that the structure variation of TiO2 coating includes the removal process of solvent and the crystallization process with the increase of annealing temperature, and the 400 °C is a critical temperature. When the annealing temperature is above 400 °C, the TiO2 coating starts to be crystallized and exhibits excellent antifogging property.  相似文献   

16.
《Comptes Rendus Chimie》2019,22(5):393-405
In this study, TiO2–ZnO nanostructured films prepared from different Ti/water mole ratios were deposited on glass plates by a sol–gel dip-coating method. The structural and surface properties, adherence, and photoactivity of synthesized TiO2–ZnO coatings in methylene blue degradation were investigated. Among the as-prepared TiO2–ZnO coatings from sols with different Ti/water mole ratios (1, 0.66, 0.5, and 0.4), the highest sol concentration (Ti/water mole ratio of 1) showed the highest methylene blue photodegradation of almost 80% after 400 min of UV irradiation. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray (EDX), and UV-vis diffuse reflectance spectra (DRS) confirmed that at high sol concentrations (Ti/water mole ratios of 1 and 0.66), a mixed phase of anatase and rutile is formed, whereas at a Ti/water mole ratio of 0.5, just pure rutile is formed. In detail, decreasing the sol concentration increases the cracks, degree of agglomeration, and the thickness of coatings. UV-vis DRS studies also confirm that decreasing the sol concentration in synthesized TiO2–ZnO films leads to a shift in the absorption region of the coating to the UV region. Moreover, decreasing the sol concentration declines the coating adherence onto glass plates. TEM images of the TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 revealed the formation of ZnO nanorods around a spherical TiO2, which indicates the presence of strong interaction between TiO2 and ZnO nanoparticles. The TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 was then evaluated at different methylene blue concentrations, pH values, and number of coatings. After five consecutive runs, no significant decrease in the photodegradation efficiency was observed. Scanning electron microscopy (SEM) picture of used coating showed a smooth and stable layer without any detachment. Thermogravimetric analysis (TG) and sonication test confirmed thermal and mechanical stabilities of this coating as well.  相似文献   

17.
采用四氯化钛(TiCl4)和氧化石墨为主要原料, 通过原位复合的方法制备了氧化钛/氧化石墨(TiO2/GO)纳米复合材料. 采用傅里叶变换红外(FTIR)光谱仪、X射线衍射(XRD)仪、热重-差热分析(TG-DTA)仪、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等手段研究了TiO2/GO纳米复合材料的结构和性能. 结果表明, 石墨在氧化过程中结构层键合大量含氧官能团, 部分含氧官能团进一步与纳米TiO2以化学键结合; 复合后氧化石墨原有衍射峰消失. 将TiO2/GO添加到水性聚氨酯(WPU)中, 制备了TiO2/GO-WPU复合涂膜. 紫外吸收光谱表明, 随着氧化石墨含量的增加, 复合涂膜的紫外吸收能力增强, 当GO含量达到一定数值时, 涂膜的紫外吸收最强, 随着GO含量继续增加吸收又呈下降趋势, 存在一较优浓度值. TiO2/GO的添加显著提高了聚氨酯涂层的抗紫外线性能, 耐磨损性能和热稳定性能.  相似文献   

18.
Inefficient charge separation and limited light absorption are two critical issues associated with high-efficiency photocatalytic H2 production using TiO2. Surface defects within a certain concentration range in photocatalyst materials are beneficial for photocatalytic activity. In this study, surface defects (oxygen vacancies and metal cation replacement defects) were induced with a facile and effective approach by surface doping with low-cost transition metals (Co, Ni, Cu, and Mn) on ultrafine TiO2. The obtained surface-defective TiO2 exhibited a 3–4-fold improved activity compared to that of the original ultrafine TiO2. In addition, a H2 production rate of 3.4 μmol/h was obtained using visible light (λ > 420 nm) irradiation. The apparent quantum yield (AQY) at 365 nm reached 36.9% over TiO2-Cu, significantly more than the commercial P25 TiO2. The enhancement of photocatalytic H2 production activity can be attributed to improved rapid charge separation efficiency and expanded light absorption window. This hydrothermal treatment with transition metal was proven to be a very facile and effective method for obtaining surface defects.  相似文献   

19.
Nitrogen-doped TiO2 nanoparticle photocatalysts were obtained by an annealing method with gaseous ammonia and nitrogen. The influence of dopant N on the crystal structure was characterized by XRD, XPS, BET, TEM and UV-Vis spectra. The results of XRD indicate that, the crystal phase transforms from anatase to rutile structure gradually with increase of annealing temperature from 300 to 700 ℃. XPS studies indicate that the nitrogen atom enters the TiO2 lattice and occupies the position of oxygen atom. Agglomeration of particles is found in TEM images after annealing. BET results show that the specific surface areas of N-doped samples from 44.61 to 38.27 m2/g are smaller than that of Degussa TiO2. UV-Vis spectra indicate that the absorption threshold shifts gradually with increase of annealing temperature, which shows absorption in the visible region. The influence of annealing condition on the photocatalytic property has been researched over water decomposition to hydrogen, indicating that nitrogen raises the photocatalytic activity for hydrogen evolution, and the modified TiO2 annealed for 2 h at 400 ℃ under gas of NH3/N2 (V/V=1/2) mixture shows better efficiency of hydrogen evolution. Furthermore, the N-doped TiO2 nanoparticle catalysts have obvious visible light activity, evidenced by hydrogen evolution under visible light (λ>400 nm) irradiation. However, the catalytic activity under visible light irradiation is absent for Degussa as reference and the N-doped TiO2 annealed at 700 ℃.  相似文献   

20.
Enhanced harvesting of visible light is vital to the development of highly efficient dye‐sensitized solar cells (DSSCs). Nanosilver‐decorated TiO2 nanofibers (Ag@TiO2 NFs) were synthesized by depositing chemically reduced Ag ions onto the surface of electrospun TiO2 nanofibers (TiO2 NFs). The prepared Ag@TiO2 NFs were coated with SiO2 (SiO2@Ag@TiO2 NFs) by using PVP as coupling agent for protecting corrosion of Ag nanoparticle by I?/${{\rm I}{{- \hfill \atop 3\hfill}}}$ solution. The fabricated SiO2@Ag@TiO2 NFs demonstrated a synergistic effect of light scattering and surface plasmons, leading to an enhanced light absorption. Moreover, an anode consisting of SiO2@Ag@TiO2 NFs incorporating TiO2 nanoparticles (NPs) increased light harvesting without substantially sacrificing dye attachment. The power conversion efficiency increased from 6.8 to 8.7 % for a thick film (10 μm), that is, 28 %. These results suggest that SiO2@Ag@TiO2 NFs are promising materials for enhanced light absorption in dye‐sensitized solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号