首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The electronic structures of a MoS2 monolayer are investigated with the all-electron first principle calculations based on the density functional theory (DFT) and the spin-orbital couplings (SOCs). Our results show that the monolayer MoS2 is a direct band gap semiconductor with a band gap of 1.8 eV. The SOCs and d-electrons in Mo play a very significant role in deciding its electronic and optical properties. Moreover, electronic elementary excitations are studied theoretically within the diagrammatic self-consistent field theory. Under random phase approximation, it shows that two branches of plasmon modes can be achieved via the conduction-band transitions due to the SOCs, which are different from the plasmons in a two-dimensional electron gas and graphene owing to the quasi-linear energy dispersion in single-layer MoS2. Moreover, the strong optical absorption up to 105 cm-1 and two optical absorption edges I and II can be observed. This study is relevant to the applications of monolayer MoS2 as an advanced photoelectronic device.  相似文献   

2.
Embedding alkali-metal in monolayer MoS2 has been investigated by using first principles with density functional theory. The calculation of the electronic and optical properties indicates that alkali-metal was embedded in monolayer MoS2 appearing almost metallic behavior, and the MoS2 layer shows clear p-type doping behavior. The covalent bonding appears between the alkali-metal atoms and defective MoS2. More importantly, embedding alkali-metal can increase the work function for monolayer MoS2. Furthermore, the absorption spectrum of monolayer MoS2 is red shifted because of alkali metal embedding. Accordingly, this study will provide the theoretical basis for producing the alkali-metal-doped monolayer MoS2 radiation shielding and photoelectric devices.  相似文献   

3.
Owing to outstandingly tunable optoelectronic properties, hybrid materials consisting of atomic scale thickness of two dimensional (2D) transition metal dichalcogenides (TMDs) and one dimensional (1D) nanowires have been attracting steady interests over the last several years. In this research for the first time we report optically probing the interaction between monolayer MoS2 and single-wall carbon nanotube (SWCNT). By using Raman and photoluminescence measurements, we found the charge transfer between MoS2 and SWCNT is sensitive to the intensity of light field. We also demonstrate that SWCNT acts as p-type dopants at physical contact with monolayer MoS2. Our study gives new insight into the interaction between monolayer MoS2 and SWCNT, which may allow new phenomena and ideas for novel low dimensional hybrid materials.  相似文献   

4.
First-principles calculation was used to study the interfacial properties of theSrRuO3 (1 1 1)/MoS2(√3 × √3) heterojunction. It is found that the huge magneticmoments in of monolayer MoS2 largely originate from the Ru-S hybridization for theRu-terminated interface. Moreover, for the SrO-terminated interface, we studied mainly themetal and semiconductor contact characteristic. The calculated results show that theSchottky barrier height can be significantly reduced to zero for the SrO-terminatedinterface. Schottky barrier heights dominate the transport behavior of theSrRuO3/MoS2 interface. Our results not only have potentialapplications in spintronics devices, but also are in favour of the scaling of field effecttransistors.  相似文献   

5.
Transition metal dichalcogenides exhibit spin–orbit split bands at the K‐point that become spin polarized for broken crystal inversion symmetry. This enables simultaneous manipulation of valley and spin degrees of freedom. While the inversion symmetry is broken for monolayers, we show here that spin polarization of the MoS2 surface may also be obtained by interfacing it with graphene, which induces a space charge region in the surface of MoS2. Polarization induced symmetry breaking in the potential gradient of the space charge is considered to be responsible for the observed spin polarization. In addition to spin polarization we also observe a renormalization of the valence band maximum (VBM) upon interfacing of MoS2 with graphene. The energy difference between the VBM at the Γ‐point and K‐point shifts by ~150 meV between the clean and graphene covered surface. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

6.
The surface plasmon polaritons (SPPs) in monolayer MoS2 nanostructures are theoretically investigated in detail. Our study shows that the strong SPPs are induced in gigahertz (GHz) frequency range. The frequencies of SPPs are very sensitive on the substrates in the nanostructures. Moreover, the frequency of such SPPs can be controlled by varying the electron densities. Our study can be applied to understand the recent experimental results and is relevant to the applications of plasmonic nano-devices based on MoS2.  相似文献   

7.
We argue that the centrosymmetric C2/c symmetry in BiMnO3 is spontaneously broken by antiferromagnetic (AFM) interactions existing in the system. The true symmetry is expected to be Cc, which is compatible with the noncollinear magnetic ground state, where the ferromagnetic order along one crystallographic axis coexists with the hidden AFM order and related to it ferroelectric polarization along two other axes. The C2/c symmetry can be restored by the magnetic field B ∼ 35 T, which switches off the ferroelectric polarization. Our analysis is based on the solution of the low-energy model constructed for the 3d-bands of BiMnO3, where all the parameters have been derived from the first-principles calculations. Test calculations for isostructural BiCrO3 reveal an excellent agreement with experimental data. The article is published in the original.  相似文献   

8.
The anisotropic magnetoelectric properties of an ytterbium aluminum borate YbAl (BO single crystal having noncentrosymmetric crystal structure (space group R32) are studied, including the orientational, field, and temperature dependences of the polarization in magnetic fields up to 5 T in the temperature range of 2–300 K. It has been shown experimentally for the first time that the symmetry of the observed magnetoelectric effects exactly corresponds to the trigonal structure of the crystal and is characterized by two quadratic magnetoelectric constants. The polarization in the basal plane P a, b is a quadratic function of the field at low fields and reaches 250–300 μC/m2 in a field of 5 T at a temperature of 2 K, almost an order of magnitude exceeding the previously reported values. A theoretical model based on the spin Hamiltonian of the ground Kramers doublet of Yb3+ ions in the crystal field is proposed including magnetoelectric interactions allowed by the symmetry. This model makes it possible to quantitatively describe all observed magnetic and magnetoelectric properties of YbAl3(BO3)4.  相似文献   

9.
Magnetic transitions from the paramagnetic state to an incommensurate magnetic structure and then to an ordered phase with long-range antiferromagnetic order in RMn2O5 (R is a rare-earth ion) oxides are analyzed. It is shown that a transition from the paramagnetic to the incommensurate phase is associated with exchange as well as relativistic interactions and can be described, apart from the basic magnetic order parameter, by an associated order parameter (viz., electric polarization along the y axis of the crystal). As a result of such a transition, the emergence of electric polarization in the crystal is not accompanied by a change in crystal symmetry.  相似文献   

10.
The electronic structure and quantum transport of a zigzag monolayer molybdenum disulfide (MoS2) nanoribbon are investigated using a six-band tight-binding model. For metallic edge modes, considering both an intrinsic spin–orbit coupling and local exchange field effects, spin degeneracy and spin inversion symmetry are broken and spin selective transport is possible. Our model is a three-terminal field effect transistor with a circular-shaped gate voltage in the middle of scattering region. One terminal measures the top edge current and the other measures the bottom edge current separately. By controlling the circular gate voltage, each terminal can detect a totally spin-polarized edge current. The radius of the circular gate and the strength of the exchange field are important, because the former determines the size of the channel in both S-terminated (top) and Mo-terminated (bottom) edges and the latter is strongly related to unbalancing of the density of spin states. The results presented here suggest that it should be possible to construct spin filters using implanted MoS2 nanoribbons.  相似文献   

11.
It is found that the spin-flop transition in EuMnO3 manganite induced by a magnetic field H parallel to the b axis is accompanied not only by a magnetization jump and magnetostriction anomalies but also by the appearance of electric polarization in the vicinity of the transition field Hcr ~ 200 kOe. This phenomenon can be associated with the occurrence of magnetically inhomogeneous (modulated) states in the vicinity of Hcr. In these states, the system loses the center of symmetry, which allows for the appearance of the polarization. The formation of such states in a magnetic field is caused by the general tendency of the occurrence of magnetically inhomogeneous (incommensurate) structures in the RMnO3 series due to the frustration of exchange interactions with decreasing ionic radius of the rare-earth ion R starting with R = Eu.  相似文献   

12.
Molybdenum disulfide nanoflakes (MoS2) are superior material for their semiconducting properties. For bulk and monolayer MoS2 the band gap changes from indirect-to-direct, respectively. So, it exhibits promising prospects in the applications of optoelectronics and valleytronics, such as solar cells, transistors, photodetectors, etc. In this research, the influence of different Ar flow rates as the carrier gas, is investigated for growing MoS2 nanoflakes on silicon substrates using one-step thermal chemical vapor deposition by simultaneously evaporating of solid sources like sulfur and molybdenum trioxide powders. The structural and optical properties of the obtained nanoflakes are assessed by using X-ray diffraction pattern, scanning electron microscopy, UV–visible absorption, photoluminescence and Raman spectroscopy. It is shown that, Ar gas flow rate is strongly affects on the final products as few-layer MoS2 structures. Moreover, the abundance of MoS2 in comparison to MoO2 and MoO3 structures, in the obtained nanoflakes, is influenced by the Ar flow rate.  相似文献   

13.
Magnetic and electron paramagnetic resonance (EPR) properties of EuFe3(BO3)4 single crystals have been studied over the temperature range of 300–4.2 K and in a magnetic field up to 5 T. The temperature, field and orientation dependences of susceptibility, magnetization and EPR spectra are presented. An antiferromagnetic ordering of the Fe subsystem occurs at about 37 K. The easy direction of magnetization perpendicular to the c axis is determined by magnetic measurements. Below 10 K, we observe an increase of susceptibility connected with the polarization of the Eu sublattice by an effective exchange field of the ordered Fe magnetic subsystem. In a magnetic field perpendicular to the c axis, we have observed an increase of magnetization at T < 10 K in the applied magnetic field, which can be attributed to the appearance of the magnetic moment induced by the magnetic field applied in the basal plane. According to EPR measurements, the distance between the maximum and minimum of derivative of absorption line of the Lorentz type is equal to 319 Gs. The anisotropy of g-factor and linewidth is due to the influence of crystalline field of trigonal symmetry. The peculiarities of temperature dependence of both intensity and linewidth are caused by the influence of excited states of europium ion (Eu3+). It is supposed that the difference between the g-factors from EPR and the magnetic measurements is caused by exchange interaction between rare earth and Fe subsystems via anomalous Zeeman effect.  相似文献   

14.
MoS2 quantum dots (QDs) have been obtained in colloidal suspensions by 532 nm laser ablation (7 ns fwhp/pulse, 50 mJ/pulse) of commercial MoS2 particles in acetonitrile. High-resolution transmission electron microscopy images show a lateral size distribution from 5 to 20 nm, but a more homogeneous particle size of 20 nm can be obtained by silica gel chromatography purification in acetonitrile. MoS2 QDs obtained by laser ablation are constituted by 3–6 MoS2 layers (1.8–4 nm thickness) and exhibit photoluminescence whose λPL varies from 430 to 530 nm depending on the excitation wavelength. As predicted by theory, the confinement effect and the larger periphery in MoS2 QDs increasing the bandgap and having catalytically active edges are reflected in an enhancement of the photocatalytic activity for H2 generation upon UV–Vis irradiation using CH3OH as sacrificial electron donor due to the increase in the reduction potential of conduction band electrons and the electron transfer kinetics.  相似文献   

15.
MoS2 and WS2 layered transition-metal dichalcogenides are indirect band gap semiconductors in their bulk forms. Thinned to a monolayer, they undergo a transition and become direct band gap materials. Layered structures of that kind can be folded to form nanotubes. We present here the electronic structure comparison between bulk, monolayered and tubular forms of transition metal disulfides using first-principle calculations. Our results show that armchair nanotubes remain indirect gap semiconductors, similar to the bulk system, while the zigzag nanotubes, like monolayers, are direct gap materials, what suggests interesting potential applications in optoelectronics.  相似文献   

16.
A group-theoretical analysis of the magnetic phase of BiMn2O5 oxide is performed using the space symmetry group of the compound. Using the projection operator method, we determine the basis functions of the irreducible representation of the space group, which are expressed in terms of the magnetic vector components. This representation can govern two phase transitions from the paramagnetic state to the antiferromagnetic phase with close temperatures and ordering of the spins of manganese ions in two crystallographic positions. It is found from renorm group analysis of these transitions that when these transitions occur as second- order transitions, the electric polarization does not appear in the system because spin fluctuations in this case elevate the symmetry of the system. Polarization appears when at least one of these transitions becomes a first-order transition as a result of spin fluctuations.  相似文献   

17.
The results of neutron diffraction studies of the La0.70Sr0.30MnO2.85 compound and its behavior in an external magnetic field are stated. It is established that in the 4–300 K temperature range, two structural perovskite phases coexist in the sample, which differ in symmetry (groups R[`3]cR\bar 3c and I4/mcm). The reason for the phase separation is the clustering of oxygen vacancies. The temperature (4–300 K) and field (0–140 kOe) dependences of the specific magnetic moment are measured. It is found that in zero external field, the magnetic state of La0.70Sr0.30MnO2.85 is a cluster spin glass, which is the result of frustration of Mn3+-O-Mn3+ exchange interactions. An increase in external magnetic field up to 10 kOe leads to fragmentation of ferromagnetic clusters and then to an increase in the degree of polarization of local spins of manganese and the emergence of long-range ferromagnetic order. With increasing magnetic field up to 140 kOe, the magnetic ordering temperature reaches 160 K. The causes of the structural and magnetic phase separation of this composition and formation mechanism of its spin-glass magnetic state are analyzed.  相似文献   

18.
The space distribution of the components of the microscopic Hamiltonian of the antisymmetric Dzyaloshinskii-Moriya exchange with respect to the exchange bond pairs of the A subsystem of Cu2+ ions in the crystallographic 4b positions of CuB2O4 has been obtained using symmetry analysis. The possibility of the coexistence of two different types of the exchange spatial distribution is demonstrated. The component of the antisymmetric exchange vector D parallel to the tetragonal axis has a weakly ferromagnetic distribution for all of the directions of the bonds between the nearest magnetic neighbors. Each exchange bond has an additional component of the antisymmetric exchange parallel to the bond projection on the tetragonal plane. The spatial distribution of these components is helicoidal with the modulation vector in the tetragonal crystal plane.  相似文献   

19.
Due to electron deficiency, the graphene-like honeycomb structure of boron is unstable. By introducing Fe atoms, it is reported that FeB2 monolayer has excellent dynamic and thermal stabilities at room temperature. Based on first-principles calculations, the spin-dependent transport of zigzag FeB2 nanoribbons (ZFeB2NRs) under ferromagnetic state (FM) is investigated. It is found that, around the Fermi level, FeB-terminated (or FeFe-terminated) ZFeB2NRs exhibit completely spin-polarized (or spin-unpolarized) transmission, and BB-terminated configurations exhibit completely unpolarized or partially polarized transmission. Further analysis shows that, the hinge dihedral angle has a switching effect on the transport channels, and the spin polarization of the transmission is determined by the symmetry of the distribution of hinge dihedral angles along the transverse direction of the ribbon, where symmetric/asymmetric distribution induces spin-unpolarized/polarized transmission. Moreover, such a symmetry effect is found to be robust to the width of the ribbon, showing great application potential. Our findings may throw light on the development of B-based spintronic devices.  相似文献   

20.
New heterophase superlattices based on MoS2 are studied in detail by the electron density functional theory. It is shown that the incorporation of the 1Т phase in the 2H-MoS2 monolayer is responsible for the formation of electronic levels near the Fermi level and quantum wells in the transverse direction of superlattices. The proposed lateral heterophase structures of transition metal dichalcogenides are promising for the construction of new elements of nanoelectronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号