首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The β‐pyranose form, (III), of 3‐deoxy‐d ‐ribo‐hexose (3‐deoxy‐d ‐glucose), C6H12O5, crystallizes from water at 298 K in a slightly distorted 4C1 chair conformation. Structural analyses of (III), β‐d ‐glucopyranose, (IV), and 2‐deoxy‐β‐d ‐arabino‐hexopyranose (2‐deoxy‐β‐d ‐glucopyranose), (V), show significantly different C—O bond torsions involving the anomeric carbon, with the H—C—O—H torsion angle approaching an eclipsed conformation in (III) (−10.9°) compared with 32.8 and 32.5° in (IV) and (V), respectively. Ring carbon deoxygenation significantly affects the endo‐ and exocyclic C—C and C—O bond lengths throughout the pyranose ring, with longer bonds generally observed in the monodeoxygenated species (III) and (V) compared with (IV). These structural changes are attributed to differences in exocyclic C—O bond conformations and/or hydrogen‐bonding patterns superimposed on the direct (intrinsic) effect of monodeoxygenation. The exocyclic hydroxymethyl conformation in (III) (gt) differs from that observed in (IV) and (V) (gg).  相似文献   

2.
3‐Deoxy‐3‐fluoro‐d ‐glucopyranose crystallizes from acetone to give a unit cell containing two crystallographically independent molecules. One of these molecules (at site A) is structurally homogeneous and corresponds to 3‐deoxy‐3‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I). The second molecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3‐deoxy‐3‐fluoro‐α‐d ‐glucopyranose, (II); treatment of the diffraction data using partial‐occupancy oxygen at the anomeric center gave a high‐quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α‐ and β‐anomers at site B appears to be accommodated in the lattice because hydrogen‐bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (BC1,C4) and ϕ(II) = 26.0 (15)° (C3TBC1); B = boat conformation and TB = twist‐boat conformation]. The exocyclic hydroxymethyl (–CH2OH) conformation is gg (gauchegauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, deoxy and fluorine‐substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.  相似文献   

3.
Methyl β‐d ‐galactopyranosyl‐(1→4)‐α‐d ‐mannopyranoside methanol 0.375‐solvate, C13H24O11·0.375CH3OH, (I), was crystallized from a methanol–ethanol solvent system in a glycosidic linkage conformation, with ϕ′ (O5Gal—C1Gal—O1Gal—C4Man) = −68.2 (3)° and ψ′ (C1Gal—O1Gal—C4Man—C5Man) = −123.9 (2)°, where the ring is defined by atoms O5/C1–C5 (monosaccharide numbering); C1 denotes the anomeric C atom and C6 the exocyclic hydroxymethyl C atom in the βGalp and αManp residues, respectively. The linkage conformation in (I) differs from that in crystalline methyl α‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐α‐d ‐glucopyranoside], (II) [Pan, Noll & Serianni (2005). Acta Cryst. C 61 , o674–o677], where ϕ′ is −93.6° and ψ′ is −144.8°. An intermolecular hydrogen bond exists between O3Man and O5Gal in (I), similar to that between O3Glc and O5Gal in (II). The structures of (I) and (II) are also compared with those of their constituent residues, viz. methyl α‐d ‐mannopyranoside, methyl α‐d ‐glucopyranoside and methyl β‐d ‐galactopyranoside, revealing significant differences in the Cremer–Pople puckering parameters, exocyclic hydroxymethyl group conformations and intermolecular hydrogen‐bonding patterns.  相似文献   

4.
rac‐5‐Diphenylacetyl‐2,2,4‐trimethyl‐2,3,4,5‐tetrahydro‐1,5‐benzothiazepine, C26H27NOS, (I), and rac‐5‐formyl‐2,2,4‐trimethyl‐2,3,4,5‐tetrahydro‐1,5‐benzothiazepine, C13H17NOS, (II), are both characterized by a planar configuration around the heterocyclic N atom. In contrast with the chair conformation of the parent benzothiazepine, which has no substituents at the heterocyclic N atom, the seven‐membered ring adopts a boat conformation in (I) and a conformation intermediate between boat and twist‐boat in (II). The molecules lack a symmetry plane, indicating distortions from the perfect boat or twist‐boat conformations. The supramolecular architectures are significantly different, depending in (I) on C—H...O interactions and intermolecular S...S contacts, and in (II) on a single aromatic π–π stacking interaction.  相似文献   

5.
Methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐xylopyranoside, C12H22O10, (II), crystallizes as colorless needles from water with positional disorder in the xylopyranosyl (Xyl) ring and no water molecules in the unit cell. The internal glycosidic linkage conformation in (II) is characterized by a ϕ′ torsion angle (C2′Gal—C1′Gal—O1′Gal—C4Xyl) of 156.4 (5)° and a ψ′ torsion angle (C1′Gal—O1′Gal—C4Xyl—C3Xyl) of 94.0 (11)°, where the ring atom numbering conforms to the convention in which C1 denotes the anomeric C atom, and C5 and C6 denote the hydroxymethyl (–CH2OH) C atoms in the β‐Xyl and β‐Gal residues, respectively. By comparison, the internal linkage conformation in the crystal structure of the structurally related disaccharide, methyl β‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐glucopyranoside], (III) [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], is characterized by ϕ′ = 153.8 (2)° and ψ′ = 78.4 (2)°. A comparison of β‐(1→4)‐linked disaccharides shows considerable variability in both ϕ′ and ψ′, with the range in the latter (∼38°) greater than that in the former (∼28°). Inter‐residue hydrogen bonding is observed between atoms O3Xyl and O5′Gal in the crystal structure of (II), analogous to the inter‐residue hydrogen bond detected between atoms O3Glc and O5′Gal in (III). The exocyclic hydroxymethyl conformations in the Gal residues of (II) and (III) are identical (gauche–trans conformer).  相似文献   

6.
The title compound, C13H24O11·4H2O, (I), crystallized from water, has an internal glycosidic linkage conformation having ϕ′ (O5Gal—C1Gal—O1Gal—C4All) = −96.40 (12)° and ψ′ (C1Gal—O1Gal—C4All—C5All) = −160.93 (10)°, where ring‐atom numbering conforms to the convention in which C1 denotes the anomeric C atom, C5 the ring atom bearing the exocyclic hydroxymethyl group, and C6 the exocyclic hydroxymethyl (CH2OH) C atom in the βGalp and βAllp residues. Internal linkage conformations in the crystal structures of the structurally related disaccharides methyl β‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐β‐d ‐glucopyranoside] methanol solvate [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], (II), and methyl β‐cellobioside [methyl β‐d ‐glucopyranosyl‐(1→4)‐β‐d ‐glucopyranoside] methanol solvate [Ham & Williams (1970). Acta Cryst. B 26 , 1373–1383], (III), are characterized by ϕ′ = −88.4 (2)° and ψ′ = −161.3 (2)°, and ϕ′ = −91.1° and ψ′ = −160.7°, respectively. Inter‐residue hydrogen bonding is observed between O3Glc and O5Gal/Glc in the crystal structures of (II) and (III), suggesting a role in determining their preferred linkage conformations. An analogous inter‐residue hydrogen bond does not exist in (I) due to the axial orientation of O3All, yet its internal linkage conformation is very similar to those of (II) and (III).  相似文献   

7.
The title compound, 2,4‐diamino‐5‐bromo‐7‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabinofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13BrFN5O3, shows two conformations of the exocyclic C4′—C5′ bond, with the torsion angle γ (O5′—C5′—C4′—C3′) being 170.1 (3)° for conformer 1 (occupancy 0.69) and 60.7 (7)° for conformer 2 (occupancy 0.31). The N‐glycosylic bond exhibits an anti conformation, with χ = −114.8 (4)°. The sugar pucker is N‐type (C3′‐endo; 3T4), with P = 23.3 (4)° and τm = 36.5 (2)°. The compound forms a three‐dimensional network that is stabilized by several intermolecular hydrogen bonds (N—H...O, O—H...N and N—H...Br).  相似文献   

8.
The structure of the adduct of eucarvone with nitro­so­benzene, C16H19NO2, is reported. The [3.2.2] bicyclic system corresponds to two seven‐membered rings in boat and distorted chair conformations and a six‐membered ring that adopts a distorted boat conformation. No conjugation is observed between the phenyl group and the N—O system. The packing is directed mainly by a C?O hydrogen bond, C—H?O‐(1 ? x, ?y, z) and by intermolecular C—H?π interactions.  相似文献   

9.
In the title compound 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐piperidone, C22H23NO3, (I), the central heterocyclic ring adopts a flattened boat conformation, while in the related salt 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐oxopiperidin­ium chloride, C22H24NO3+·Cl, (II), the ring exhibits a `sofa' conformation in which the N atom deviates from the planar fragment. The pendant benzene rings are twisted from the heterocyclic ring planes in both mol­ecules in the same direction, the range of dihedral angles between the ring planes being 24.5 (2)–32.7 (2)°. The dominant packing motif in (I) involves centrosymmetric dimers bound by weak intermolecular C—H⋯O hydrogen bonds. In (II), cations and anions are linked by strong N—H⋯Cl hydrogen bonds, while weak C—H⋯O and C—H⋯Cl hydrogen bonds link the cations and anions into a three‐dimensional framework.  相似文献   

10.
Methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNAcOCH3), (I), crystallizes from water as a dihydrate, C9H17NO6·H2O, containing two independent molecules [denoted (IA) and (IB)] in the asymmetric unit, whereas the crystal structure of methyl 2‐formamido‐2‐deoxy‐β‐d ‐glucopyranoside (β‐GlcNFmOCH3), (II), C8H15NO6, also obtained from water, is devoid of solvent water molecules. The two molecules of (I) assume distorted 4C1 chair conformations. Values of ϕ for (IA) and (IB) indicate ring distortions towards BC2,C5 and C3,O5B, respectively. By comparison, (II) shows considerably more ring distortion than molecules (IA) and (IB), despite the less bulky N‐acyl side chain. Distortion towards BC2,C5 was observed for (II), similar to the findings for (IA). The amide bond conformation in each of (IA), (IB) and (II) is trans, and the conformation about the C—N bond is anti (C—H is approximately anti to N—H), although the conformation about the latter bond within this group varies by ∼16°. The conformation of the exocyclic hydroxymethyl group was found to be gt in each of (IA), (IB) and (II). Comparison of the X‐ray structures of (I) and (II) with those of other GlcNAc mono‐ and disaccharides shows that GlcNAc aldohexopyranosyl rings can be distorted over a wide range of geometries in the solid state.  相似文献   

11.
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6‐hydroxy‐5,7,8‐trimethylchroman‐2‐one substituted at the 5‐position by a Br atom in (I) and by a nitro group in (II). The pyranone rings in both molecules adopt half‐chair conformations, and intramolecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hydroxy groups. Classical intermolecular O—H...O hydrogen bonds are found in both molecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close intermolecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking interactions between the benzene rings to build an extensive three‐dimensional network with molecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O interactions generate a three‐dimensional network of dimer stacks.  相似文献   

12.
The title compound, 1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐(prop‐1‐ynyl)pyrimidin‐2,4(1H,3H)‐dione, C12H14N2O5, shows two conformations in the crystalline state: conformer 1 adopts a C2′‐endo (close to 2E; S‐type) sugar pucker and an anti nucleobase orientation [χ = −134.04 (19)°], while conformer 2 shows an S sugar pucker (twisted C2′‐endo–C3′‐exo), which is accompanied by a different anti base orientation [χ = −162.79 (17)°]. Both molecules show a +sc (gauche, gauche) conformation at the exocyclic C4′—C5′ bond and a coplanar orientation of the propynyl group with respect to the pyrimidine ring. The extended structure is a three‐dimensional hydrogen‐bond network involving intermolecular N—H...O and O—H...O hydrogen bonds. Only O atoms function as H‐atom acceptor sites.  相似文献   

13.
The X‐ray analyses of 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐glucopyranosyl fluoride, C14H19FO9, (I), and the corresponding maltose derivative 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐acetyl‐α‐d ‐glucopyranosyl fluoride, C26H35FO17, (II), are reported. These add to the series of published α‐glycosyl halide structures; those of the peracetylated α‐glucosyl chloride [James & Hall (1969). Acta Cryst. A 25 , S196] and bromide [Takai, Watanabe, Hayashi & Watanabe (1976). Bull. Fac. Eng. Hokkaido Univ. 79 , 101–109] have been reported already. In our structures, which have been determined at 140 K, the glycopyranosyl ring appears in a regular 4C1 chair conformation with all the substituents, except for the anomeric fluoride (which adopts an axial orientation), in equatorial positions. The observed bond lengths are consistent with a strong anomeric effect, viz. the C1—O5 (carbohydrate numbering) bond lengths are 1.381 (2) and 1.381 (3) Å in (I) and (II), respectively, both significantly shorter than the C5—O5 bond lengths, viz. 1.448 (2) Å in (I) and 1.444 (3) Å in (II).  相似文献   

14.
Cyclodecyl 4‐nitrophenylacetate, C18H25NO4, has its ten‐membered ring in the expected diamond‐lattice boat–chair–boat [2323] conformation, with the substituent 4‐nitro­phenyl­acet­oxy group in the BCB IIIe position. The ester unit has the expected Z conformation, with an O=C—O—C torsion angle of −0.3 (3)°, and the connection to the benzene ring is nearly perpendicular to the ester, with an O=C—C—C torsion angle of 85.5 (2)°. An inter­molecular contact exists between the ester C atom and a nitro O atom, having a C⋯O distance of 2.909 (2) Å.  相似文献   

15.
Methyl β‐allolactoside [methyl β‐d ‐galactopyranosyl‐(1→6)‐β‐d ‐glucopyranoside], (II), was crystallized from water as a monohydrate, C13H24O11·H2O. The βGalp and βGlcp residues in (II) assume distorted 4C1 chair conformations, with the former more distorted than the latter. Linkage conformation is characterized by ϕ′ (C2Gal—C1Gal—O1Gal—C6Glc), ψ′ (C1Gal—O1Gal—C6Glc—C5Glc) and ω (C4Glc—C5Glc—C6Glc—O1Gal) torsion angles of 172.9 (2), −117.9 (3) and −176.2 (2)°, respectively. The ψ′ and ω values differ significantly from those found in the crystal structure of β‐gentiobiose, (III) [Rohrer et al. (1980). Acta Cryst. B 36 , 650–654]. Structural comparisons of (II) with related disaccharides bound to a mutant β‐galactosidase reveal significant differences in hydroxymethyl conformation and in the degree of ring distortion of the βGlcp residue. Structural comparisons of (II) with a DFT‐optimized structure, (IIC), suggest a link between hydrogen bonding, pyranosyl ring deformation and linkage conformation.  相似文献   

16.
In the molecule of 4‐(2‐chlorophenyl)pyrrolo[1,2‐a]quinoxaline, C17H11ClN2, (I), the bond lengths are consistent with electron delocalization in the two outer rings of the fused tricyclic system, with a localized double bond in the central ring. The molecules of (I) are linked into chains by a π–π stacking interaction. In (4RS)‐4‐(1,3‐benzodioxol‐6‐yl)‐4,5‐dihydropyrrolo[1,2‐a]quinoxaline, C18H14N2O2, (II), the central ring of the fused tricyclic system adopts a conformation intermediate between screw‐boat and half‐chair forms. A combination of N—H...O and C—H...π(arene) hydrogen bonds links the molecules of (II) into a sheet. Comparisons are made with related compounds.  相似文献   

17.
There is a paucity of data concerning the structures of six‐ and seven‐membered tellurium‐ and nitrogen‐containing (Te—N) heterocycles. The title compounds, C8H7NOTe, (I), and C9H9NOTe, (II), represent the first structurally characterized members of their respective classes. Both crystallize with two independent molecules in the asymmetric unit. When compared to their sulfur analogs, they exhibit slightly greater deviations from planarity to accommodate the larger chalcogenide atom, with (II) adopting a pronounced twist‐boat conformation. The C—Te—C angles of 85.49 (15) and 85.89 (15)° for the two independent molecules of (I) were found to be somewhat smaller than those of 97.4 (2) and 97.77 (19)° for the two independent molecules of (II). The C—Te bond lengths [2.109 (4)–2.158 (5) Å] are in good agreement with those predicted by the covalent radii. Intermolecular N—H...O hydrogen bonding in (I) forms centrosymmetric R22(8) dimers, while that in (II) forms chains. In addition, intermolecular Te...O contacts [3.159 (3)–3.200 (3) Å] exist in (I).  相似文献   

18.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

19.
Methyl β‐l ‐lactoside, C13H24O11, (II), is described by glycosidic torsion angles ϕ (O5Gal—C1Gal—O4Glc—C4Glc) and ψ (C1Gal—O1Gal—C4Glc—C5Glc) of 93.89 (13) and −127.43 (13)°, respectively, where the ring atom numbering conforms to the convention in which C1 is the anomeric C atom and C6 is the exocyclic hydroxy­methyl (CH2OH) C atom in both residues (Gal is galactose and Glc is glucose). Substitution of l ‐Gal for d ‐Gal in the biologically relevant disaccharide, methyl β‐lactoside [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], (I), significantly alters the glycosidic linkage inter­face. In the crystal structure of (I), one inter‐residue (intra­molecular) hydrogen bond is observed between atoms H3OGlc and O5Gal. In contrast, in the crystal structure of (II), inter‐residue hydrogen bonds are observed between atoms H6OGlc and O5Gal, H6OGlc and O6Gal, and H3OGlc and O2Gal, with H6OGlc serving as a donor with two intra­molecular acceptors.  相似文献   

20.
In the title compound, 4‐amino‐1‐(2‐de­oxy‐β‐d ‐erythro‐pentofuranos­yl)‐6‐methyl­sulfanyl‐1H‐pyrazolo[3,4‐d]pyrimidine, C11H16N5O3S, the conformation of the glycosidic bond is between anti and high anti. The 2′‐deoxy­ribofuranosyl moiety adopts the C3′‐exo–C4′‐endo conformation (3T4, S‐type sugar pucker), and the conformation at the exocyclic C—C bond is +sc (+gauche). The exocyclic 6‐amine group and the 2‐methyl­sulfanyl group lie on different sides of the heterocyclic ring system. The mol­ecules form a three‐dimensional hydrogen‐bonded network that is stabilized by O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号