首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We synthesized a new class of O2 electrocatalysts with a high activity and very low noble metal content. They consist of Pt monolayers deposited on the surfaces of carbon-supported nonnoble metal-noble metal core-shell nanoparticles. These core-shell nanoparticles were formed by segregating the atoms of the noble metal on to the nanoparticles' surfaces at elevated temperatures. A Pt monolayer was deposited by galvanic displacement of a Cu monolayer deposited at underpotentials. The mass activity of all the three Pt monolayer electrocatalysts investigated, viz., Pt/Au/Ni, Pt/Pd/Co, and Pt/Pt/Co, is more than order of magnitude higher than that of a state-of-the-art commercial Pt/C electrocatalyst. Geometric effects in the Pt monolayer and the effects of PtOH coverage, revealed by electrochemical data, X-ray diffraction, and X-ray absorption spectroscopy data, appear to be the source of the enhanced catalytic activity. Our results demonstrated that high-activity electrocatalysts can be devised that contain only a fractional amount of Pt and a very small amount of another noble metal.  相似文献   

2.
Bimetallic Au–Pd nanoparticles were synthesized under high-energy irradiation fields (1.17 and 1.33 MeV γ-rays, 9 MeV electrons, and 1.6 GeV C ions) from solutions containing Au3+ and Pd2+ and cationic surfactant (sodium dodecyl sulfate). Particles synthesized by the irradiation were observed using conventional transmission electron microscope (TEM) and annular dark-field scanning transmission electron microscopy (ADF-STEM). The particles synthesized by γ-rays and C ion irradiation exhibit core–shell structure with a Au-core and a Pd-shell. The dependence of the size distribution of nanoparticles on the dose rate is discussed.  相似文献   

3.
MgO promoted Pt/C electrocatalysts were rapidly prepared by intermittent microwave heating method and characterized using different techniques. Electrooxidation of ethanol on MgO promoted Pt/C catalysts in alkaline media was studied. Such electrocatalysts are superior to pure Pt electrocatalysts. The influence of the amount of MgO in the catalysts on catalytic activity for ethanol oxidation was tested. The electrode with a weight ratio of Pt to MgO of 4:1 showed the highest electrocatalytic activity for ethanol oxidation. The presence of MgO in the electrocatalysts improved the kinetic processes, giving the exchange current density for ethanol oxidation of 1.8 × 10−5 A cm−2 on Pt–MgO/C instead of 3.3 × 10−7 A cm−2 on Pt/C.  相似文献   

4.
A new Pt monolayer electrocatalyst concept is described and the results of electrochemical and X-ray absorption spectroscopy (XAS) studies are presented. Two new methods that facilitate the application of this concept in obtaining ultra-low-Pt-content electrocatalysts have been developed. One is the electroless (spontaneous) deposition of a Pt submonolayer on Ru nanoparticles, and the other is a deposition of a Pt monolayer on Pd nanoparticles by redox displacement of a Cu adlayer. The Pt submonolayer on Ru (PtRu20) electrocatalyst demonstrated higher CO tolerance than commercial catalysts under conditions of rotating disk experiments. The long-term stability test showed no loss in performance over 870 h using a fuel cell operating under real conditions, even though the Pt loading was approximately 10% of that of the standard Pt loading. In situ XAS indicated an increase in d-band vacancy of deposited Pt, which may facilitate partly the reduced susceptibility to CO poisoning for this catalyst. The kinetics of O2 reduction on a Pt monolayer on Pd nanoparticles showed a small enhancement in comparison with that from a Pt nanoparticle electrocatalyst. The increase in catalytic activity is partly attributed to decreased formation of PtOH, as shown by XAS experiments.  相似文献   

5.
The present study reports the shell thickness dependence fluorescence resonance energy transfer between Rhodamine 6G dye and Au@SnO2 core–shell nanoparticles. There is a pronounced effect on the PL quenching and shortening of the lifetime of the dye in presence of Au@SnO2 core–shell nanoparticles. The calculated energy transfer efficiencies from dye to Au@SnO2 are 64.4% and 78.3% for 1.5 nm and 2.5 nm thickness of shell, respectively. Considering the interactions of single acceptor and multiple donors, the calculated average distances (rn) are 75.8 and 71.5 Å for 1.5 nm and 2.5 nm thick core–shell Au@SnO2 nanoparticles, respectively.  相似文献   

6.
We measured the activity of electrocatalysts, comprising Pt monolayers deposited on PdCo/C substrates with several Pd/Co atomic ratios, in the oxygen reduction reaction in alkaline solutions. The PdCo/C substrates have a core-shell structure wherein the Pd atoms are segregated at the particle’s surface. The electrochemical measurements were carried out using an ultrathin film rotating disk-ring electrode. Electrocatalytic activity for the O2 reduction evaluated from the Tafel plots or mass activities was higher for Pt monolayers on PdCo/C compared to Pt/C for all atomic Pd/Co ratios we used. We ascribed the enhanced activity of these Pt monolayers to a lowering of the bond strength of oxygenated intermediates on Pt atoms facilitated by changes in the 5d-band reactivity of Pt. Density functional theory calculations also revealed a decline in the strength of PtOH adsorption due to electronic interaction between the Pt and Pd atoms. We demonstrated that very active O2 reduction electrocatalysts can be devised containing only a monolayer Pt and a very small amount of Pd alloyed with Co in the substrate. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24, 2007.  相似文献   

7.
A series of highly water-soluble organo-silica nanoparticles, ranging from 2 to 10 nm in diameter, were synthesized by the cohydrolysis and copolycondensation reactions. ω-methoxy(polyethyleneoxy)propyltrimethoxysilane (PEG6-9) and hydroxymethyltriethoxysilane (HMTEOS) mixtures were catalyzed by sodium hydroxide in the presence of surfactant benzethonium chloride (BTC) with various ratios of PEG6-9/HMTEOS at room temperature. The synthesized organo-silica nanoparticles possess a core–shell structure with a core of organo-silica resulting from HMTEOS and a monolayer shell of PEG6-9. The chemo-physical characteristics of the particles were studied by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, 29Si nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The molecular weight and particle size of the particles increased with increasing HMTEOS molar ratios. The richest HMTEOS composition for the water-soluble particles was found to be HMTEOS:PEG6-9 = 80:20, where the particles had a 6 nm diameter core and a 0.8 nm thick shell. We propose that these water-soluble organo-silica nanoparticles will be suitable for biomedical applications.  相似文献   

8.
We have synthesized a new class of electrocatalysts for the O2 reduction reaction, consisting of a mixed monolayer of Pt and another late transition metal (Ir, Ru, Rh, Re, or Os) deposited on a Pd(111) single crystal or on carbon-supported Pd nanoparticles. Several of these mixed monolayer electrocatalysts exhibited very high activity and increased stability of Pt against oxidation, as well as a 20-fold increase in a Pt mass-specific activity, compared with state-of-the-art all-Pt electrocatalysts. Their superior activity and stability reflect a low OH coverage on Pt, caused by the lateral repulsion between the OH adsorbed on Pt and the OH or O adsorbed on neighboring, other than Pt, late transition metal atoms. The origin of this effect was identified through a combination of experimental and theoretical methods, employing electrochemical techniques, in situ X-ray absorption spectroscopy, and periodic, self-consistent density functional theory calculations. This new class of electrocatalysts promises to alleviate some major problems of existing fuel cell technology by simultaneously decreasing materials cost and enhancing performance. Our studies suggest a new way of synthesizing improved ORR catalysts through the modification and control of the surface reactivity of Pt-based mixed monolayers supported on transition metals other than Pt. In addition to improving the ORR catalysts, co-depositing oxophilic metals may be a promising possibility for improving a variety of other catalysts.  相似文献   

9.
通过一种结合了CO辅助合成Pt3Ni纳米立方粒子和单原子层Cu壳欠电位沉积再置换为Pd的方法,成功制备出了具有单原子层Pd壳和Pt3Ni纳米立方粒子核结构的Pt3Ni@Pd/C催化剂。电感耦合等离子体元素分析、X射线衍射和透射电子显微镜法被用于研究表征此种Pt3Ni@Pd/C催化剂,结果显示大部分Pt3Ni纳米粒子的表面都由{100}族的晶面所构成。而且在这些{100}族的晶面上,单原子层Pd壳通过电沉积的外延生长,也获得了{100}族的晶面。本文进一步对Pt3Ni@Pd/C作为甲酸氧化电催化剂的性能进行了研究,并与商业Pd/C和原Pt3Ni/C催化剂进行了比较。结果显示,由于Pt3Ni@Pd/C的单原子层Pd壳的结构和所暴露出的Pd{100}族的晶面,Pt3Ni@Pd/C催化剂具有优异的甲酸氧化电催化性能。与原Pt3Ni/C催化剂相比较,Pt3Ni@Pd/C催化剂的贵金属质量比活性提高到了7.5倍。此外,与商业Pd/C催化剂相比,Pt3Ni@Pd/C催化剂的比表面活性和Pd质量比活性也分别提高到了2.5和8.3倍。  相似文献   

10.
A facile, one-step reduction route was developed to synthesize Pd-rich carbon-supported Pd–Pt alloy electrocatalysts of different Pd/Pt atomic ratios. As-prepared Pd–Pt/C catalysts exhibit a single phase fcc structure and an expansion lattice parameter. Comparison of the oxygen reduction reaction (ORR) on the Pd–Pt/C alloy catalysts indicates that the Pd3Pt1/C bimetallic catalyst exhibits the highest ORR activity among all the Pd–Pt alloy catalysts and shows a comparative ORR activity with the commercial Pt/C catalyst. Moreover, all the Pd–Pt alloy catalysts exhibited much higher methanol tolerance during the ORR than the commercial Pt/C catalyst. High methanol tolerance of the Pd–Pt alloy catalysts could be attributed to the weak adsorption of methanol induced by the composition effect, to the presence of Pd atoms and to the formation of Pd-based alloys.  相似文献   

11.
分别利用液相热解法和浸渍还原法制备了碳载钯纳米催化剂(Pd/C),并研究了其对氧还原反应的电催化活性。与浸渍还原法相比,液相热解法得到的Pd/C催化剂虽然粒径较大,但表现出较好的氧还原反应(ORR)活性和稳定性.在所制备的Pd/C催化剂基础上,通过置换欠电势沉积的Cu原子单层,获得了Pt单层修饰的Pd/C催化剂,其ORR活性较Pd/C催化剂有显著提高,且与纯Pt/C催化剂接近,而其耐久性则较纯Pt/C催化剂有显著提升,显示出Pt单层催化剂的潜在优势.  相似文献   

12.
Conventional solvothermal synthesis of core–shell nanoparticles results in them being covered with surfactant molecules for size control and stabilization, undermining their practicality as electrocatalysts. Here, we report an electrochemical method for the synthesis of core–shell nanoparticles directly on electrodes, free of surfactants. By implementation of selective electrodeposition on gold cores, 1st-row transition metal shells were constructed with facile and precise thickness control. This type of metal-on-metal core–shell synthesis by purely electrochemical means is the first of its kind. The applicability of the nanoparticle decorated electrodes was demonstrated by alkaline oxygen evolution catalysis, during which the Au–Ni example displayed stable catalysis with low overpotential.

Core–shell nanoparticles can be synthesized by pure electrochemical methods, and the size of the core and the thickness of the shell can be precisely controlled. The nanoparticle-decorated electrodes exhibited respectable oxygen evolution catalysis.  相似文献   

13.
Segregation phenomena of Pd–Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd–Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd–Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd–Pt bimetallic clusters.  相似文献   

14.
Pt3Co/C electrocatalysts are not stable when operated in real PEMFC conditions but face variations of their chemical composition. The latter signs that Co atoms can segregate from the bulk to the surface of the nanoparticles, which we believe is activated by the formation of surface oxides and the leaching of Co at the surface. Consequently, the alloyed Pt3Co/C nanoparticles slowly evolve towards Pt shell/Pt–Co alloy core structures with depleted Co content and a Pt-enriched shell.  相似文献   

15.
It has been demonstrated that Pd2+ ions can be reduced onto Pt surface in the presence of organic materials but only at a very low Cl ion activity. Unlike rhenium deposition, Pd deposition may proceed after the formation of an adsorbed Pd monolayer and bulk deposits are formed on the Pt surface.  相似文献   

16.
Highly ordered Pd/Pt–core–shell nanowire arrays (Pd/Pt NWAs) have been prepared by anodized aluminum oxide (AAO) template-electrodeposition and magnetron sputtering methods. Pd/Pt NWA electrode shows a very high electrochemical active surface area and high electrocatalytic activity for the methanol electrooxidation in acid medium for direct methanol fuel cells (DMFCs). The mass specific anodic peak current density is 756.7 mA mg−1 Pt for the methanol oxidation on the Pd/Pt NWA electrode, an increase by a factor of four as compared to conventional E-TEK PtRu/C electrocatalysts. The mechanism of the significant enhancement of the Pd/Pt core/shell NWA nanostructure in the efficiency and electrocatalytic activity of Pt for the methanol electrooxidation in acid medium is discussed.  相似文献   

17.
Different amounts of Pt atoms were deposited onto the surface of Pd nanoparticles supported on carbon black by hydroquinone reduction method in anhydrous ethanol. Here, we surveyed electrochemical probing of surface compositions of Pd–Pt surface alloys. They were calculated from hydrogen desorption, carbon monoxide adlayer oxidation, and reduced carbon dioxide oxidation charges. The surface composition of Pt drastically increased up to Pt[0.3]/Pd/C (23.1 at.% of Pt) and then approached that of pure Pt with the moderate rate of increase.  相似文献   

18.
Thin metal films with a thickness of one or over one monolayer formed on quasicrystalline surfaces were studied using reflection high-energy electron diffraction, X-ray photoelectron spectroscopy, X-ray photoelectron diffraction and scanning tunneling microscopy. The substrates were the 10f surface of d-Al–Ni–Co and the 5f surface of i-Al–Pd–Mn. The metals deposited were Au, Pt, Ag and In. None of these metals forms any ordered layer by deposition onto clean quasicrystalline surfaces. However, if a submonolayer of In is present atop the 10f surface, an epitaxial layer of multiply-twinned AuAl2 crystals is formed by Au deposition and subsequent annealing. This is also the case for Pt deposition, but not for Ag deposition. Although the surfactant effect of In is also observed in the case of Au deposition on the 5f surface of i-Al–Pd–Mn, the ordered layer formed is a film of Au–Al alloy with icosahedral symmetry. No ordered films are formed by Pt or Ag deposition onto the 5f surface, regardless of the presence of an In-precovered layer. A Sn film monolayer induced by surface diffusion was also studied.  相似文献   

19.
Understanding the electrocatalytic activity at single nanoparticles/nanoclusters level is extremely important. In this work, a method for the electro-deposition of single Pt–Pd nanoparticles (NPs) is described using a single nanopore electrode as a template. The electro-deposition process was investigated carefully and the results show that the process is controlled by diffusion and electro-crystallization process, simultaneously, and the glass sheath property around the nanopore has a large impact on the formation of single Pt–Pd NPs due to the “edge effect”. The prepared single Pt–Pd NPs exhibit excellent electrocatalytic activity in the methanol oxidation reaction, which can be used to screen electrocatalysts with high efficiency for utility in the energy field.  相似文献   

20.
The emulsifier-free core–shell interpenetrating polymer network (IPN) fluorinated polyacrylate latex particles with fluorine rich in shell were prepared by emulsifier-free seeded emulsion polymerization with water as the reaction medium. The fluorinated copolymer could be fixed on the particle surface due to the formation of interpenetrating polymer network. The resultant core–shell particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, Fourier transform infrared (FTIR) spectrometry, X-ray photoelectron spectroscopy (XPS) analysis and thermogravimetric analysis (TGA). The core–shell particles possessed very narrow monomodal particle size distributions. XPS analysis of the latex film displayed that perfluoroalkyl groups had the tendency to enrich at surface and there was a gradient concentration of fluorine in the structure of the latex film from the film–air interface to the film–glass interface. In addition, compared with the latex film of crosslinked polyacrylate prepared under the same condition, the emulsifier-free core–shell IPN-fluorinated polyacrylate latex film showed better thermal stability, higher contact angle and lower water uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号