首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The preparation, X-ray crystallography, EPR, magnetic and luminescent investigation of new metal-anion radical framework materials based on a new anion radical ligand generated by in situ deprotonation of a stable zwitterionic radical are described herein. N,O,N-tripodal anion radical ligand (bipo(-)˙) links metal cations, giving rise to four isostructural one-dimensional metal-organic frameworks, [M(bipo(-)˙)(L)](n) [M = Zn, L = HCOO(-) (1), SCN(-) (1a), N(3)(-) (1b); M = Co, L = Br(-) (3)]. The tripodal bipo(-)˙ ligand and one co-ligand, 1,4-benzenedicarboxylate, coordinate to metals leading to two isostructural two-dimensional metal-organic frameworks, [M(bipo(-)˙)(BDC)(0.5)](n) [M = Zn (2) and Co (4)]. The two Co(II) compounds are the first examples that exhibit unusual ferromagnetic to antiferromagnetic phase transition with transition temperature over room temperature, which can be demonstrated by the cooling and warming measurements of susceptibility. Compound 4 also exhibits long-range magnetic ordering with the critical temperature at about 44 K proved by ac susceptibility measurements. The metal-radical frameworks exhibit distinctly different fluorescence emissions. Especially, the isomorphous one-dimensional Zn(II) compounds show interesting terminal anion ligand-induced photoluminescent color changes, including direct and invariable white-light-emission with terminal SCN(-) ligand.  相似文献   

2.
Two mononuclear copper(II) complexes with the unsymmetrical tridentate ligand 2-[((imidazol-2-ylmethylidene)amino)ethyl]pyridine (HL), [Cu(HL)(H2O)](ClO4)2.2H2O (1) and [Cu(HL)Cl2] (2), have been prepared and characterized. The X-ray analysis of 2 revealed that the copper(II) ion assumes a pentacoordinated square pyramidal geometry with an N3Cl2 donor set. When 1 and 2 are treated with an equimolecular amount of potassium hydroxide, the deprotonation of the imidazole moiety promotes a self-assembled process, by coordination of the imidazolate nitrogen atom to a Cu(II) center of an adjacent unit, leading to the polynuclear complexes [[Cu(L)(H2O)](ClO4)]n (3) and [[Cu(L)Cl].2H2O]n (4). Variable-temperature magnetic data are well reproduced for one-dimensional infinite regular chain systems with J = -60.3 cm(-1) and g = 2.02 for 3 and J = -69.5 cm(-1) and g = 2.06, for 4. When 1 is used as a "ligand complex" for [M(hfac)2] (M = Cu(II), Ni(II), Mn(II), Zn(II)) in a basic medium, only the imidazolate-bridged trinuclear complexes [Cu(L)(hfac)M(hfac)2Cu(hfac)(L)] (M = Zn(II), Cu(II)) (5, 6) can be isolated. Nevertheless, the analogous complex containing Mn(II) as the central metal (7) can be prepared from the precursor [Cu(HL)Cl2] (2). All the trinuclear complexes are isostructural. The structures of 5 and 6 have been solved by X-ray crystallographic methods and consist of well-isolated molecules with Ci symmetry, the center of symmetry being located at the central metal. Thus, the copper(II) fragments are in trans positions, leading to a linear conformation. The magnetic susceptibility data (2-300 K), which reveal the occurrence of antiferromagnetic interactions between copper(II) ions and the central metal, were quantitatively analyzed for symmetrical three-spin systems to give the coupling parameters JCuCu = -37.2 and JCuMn = -3.7 cm(-1) with D = +/-0.4 cm(-1) for 6 and 7, respectively. These magnetic behaviors are compared with those for analogous systems and discussed on the basis of a localized-orbital model of exchange interactions.  相似文献   

3.
Ten new chiral coordination polymers, namely, [Ni(L)(H(2)O)(2)] (1), [Co(L)(H(2)O)(2)] (2), [Cd(L)(H(2)O)] (3), [Cd(L)(phen)] (4), [Mn(2)(L)(2) (phen)(2)]·H(2)O (5), [Cd(2)(L)(2)(biim-4)(2)] (6), [Zn(2)(L)(2)(biim-4)(2)] (7), [Cd(L)(pbib)] (8), [Cd(L)(bbtz)] (9) and [Cd(L)(biim-6)] (10), where phen = 1,10-phenathroline, biim-4 = 1,1'-(1,4-butanediyl)bis(imidazole), pbib = 1,4-bis(imidazole-1-ylmethyl)benzene, bbtz = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, biim-6 = 1,1'-(1,6-hexanedidyl)bis(imidazole), and H(2)L = (R)-2-(4'-(4'-carboxybenzyloxy)phenoxy)propanoic acid, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra (IR), powder X-ray diffraction (PXRD), elemental analyses and thermogravimetric (TG) analyses. Compounds 1 and 2 exhibit similar 1D left-handed helical chains, which are further extended into 3D supramolecular structures through O-H···O hydrogen-bonding interactions, respectively. Compound 3 shows a 2D double-layer architecture containing helical chains. Compound 4 features two types of 2D undulated sheets with helical chains, which are stacked in an ABAB fashion along the c direction. Compound 5 possesses a 1D double chain ribbon structure containing unusual meso-helical chains, which is linked by π-π interactions into a 2D supramolecular layer. These layers are further extended by hydrogen-bonding interactions to form a 3D supramolecular assembly. Compounds 6 and 7 are isostructural and exhibit 2D (4(4))-sql networks with helical chains. Neighboring sheets are further linked by C-H···O hydrogen-bonding interactions to generate 3D supramolecular architectures. Compounds 8-10 are isostructural and display 3D 3-fold interpenetrating diamond frameworks with helical chains. The effects of coordination modes of L anions, metal ions and N-donor ligands on the structures of the coordination polymers have been discussed. The luminescent properties of 3, 4 and 6-10 have also been investigated in detail.  相似文献   

4.
Ni ZH  Kou HZ  Zheng L  Zhao YH  Zhang LF  Wang RJ  Cui AL  Sato O 《Inorganic chemistry》2005,44(13):4728-4736
Two new cyano-bridged heterobinuclear complexes, [Mn(II)(phen)2Cl][Fe(III)(bpb)(CN)2] x 0.5CH3CH2OH x 1.5H2O (1) and [Mn(II)(phen)2Cl][Cr(III)(bpb)(CN)2] x 2H2O (2) [phen = 1,10-phenanthroline; bpb(2-) = 1,2-bis(pyridine-2-carboxamido)benzenate], and four novel azido-bridged Mn(II) dimeric complexes, [Mn2(phen)4(mu(1,1)-N3)2][M(III)(bpb)(CN)2]2 x H2O [M = Fe (3), Cr (4), Co (5)] and [Mn2(phen)4(mu(1,3)-N3)(N3)2]BPh4 x 0.5H2O (6), have been synthesized and characterized by single-crystal X-ray diffraction analysis and magnetic studies. Complexes 1 and 2 comprise [Mn(phen)2Cl]+ and [M(bpb)(CN)2]- units connected by one cyano ligand of [M(bpb)(CN)2]-. Complexes 3-5 are doubly end-on (EO) azido-bridged Mn(II) binuclear complexes with two [M(bpb)(CN)2]- molecules acting as charge-compensating anions. However, the Mn(II) ions in complex 6 are linked by a single end-to-end (EE) azido bridging ligand with one large free BPh4(-) group as the charge-balancing anion. The magnetic coupling between Mn(II) and Fe(III) or Cr(III) in complexes 1 and 2 was found to be antiferromagnetic with J(MnFe) = -2.68(3) cm(-1) and J(MnCr) = -4.55(1) cm(-1) on the basis of the Hamiltonian H = -JS(Mn)S(M) (M = Fe or Cr). The magnetic interactions between two Mn(II) ions in 3-5 are ferromagnetic in nature with the magnetic coupling constants of 1.15(3), 1.05(2), and 1.27(2) cm(-1) (H = -JS(Mn1)S(Mn2)), respectively. The single EE azido-bridged dimeric complex 6 manifests antiferromagnetic interaction with J = -2.29(4) cm(-1) (H = -JS(Mn1)S(Mn2)). Magneto-structural correlationship on the EO azido-bridged Mn(II) dimers has been investigated.  相似文献   

5.
Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [N(1)-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M2X3(HL)(H2O)5].yH2O (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, y=0-3); [Fe2Cl5(HL)(H2O)3].2H2O; [(FeSO4)2(H2L)(H2O)4] and [(UO2)2(NO3)3(HL)(H2O)].2H2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi (Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.  相似文献   

6.
The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.  相似文献   

7.
The reaction of manganese(II) acetate with a xanthene-bridged bis[3-(salicylideneamino)-1-propanol] ligand, H(4)L, afforded the tetramanganese(II,II,III,III) complex [Mn(4)(L)(2)(μ-OAc)(2)], which has an incomplete double-cubane structure. The corresponding reaction using manganese(II) chloride in the presence of a base gave the tetramanganese(III,III,III,III) complex [Mn(4)(L)(2)Cl(3)(μ(4)-Cl)(OH(2))], in which four Mn ions are bridged by a Cl(-) ion. A pair of L ligands has a propensity to incorporate four Mn ions, the arrangement and oxidation states of which are dependent on the coexistent anions.  相似文献   

8.
Hydro- and solvo-thermal reactions of d-block metal ions (Mn(2+), Co(2+), Zn(2+) and Cd(2+)) with monosodium 2-sulfoterephthalate (NaH(2)stp) form six 3D coordination polymers featuring cluster core [M(4)(μ(3)-OH)(2)](6+) in common: [M(2)(μ(3)-OH)(stp)(H(2)O)] (M = Co (1), Mn (2) and Zn (3)), [Zn(2)(μ(3)-OH)(stp)(H(2)O)(2)] (4), [Zn(4)(μ(3)-OH)(2)(stp)(2)(bpy)(2)(H(2)O)]·3.5H(2)O (5) and [Cd(2)(μ(3)-OH)(stp) (bpp)(2)]·H(2)O (6) (stp = 2-sulfoterephthalate, bpy = 4,4'-bipyridine and bpp = 1,3-di(4-pyridyl)propane). All these coordination polymers were characterized by single crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analysis. Complexes 1-3 are isostructural coordination polymers with 3D frameworks based on the chair-like [Zn(4)(μ(3)-OH)(2)](6+) core and the quintuple helixes. In complex 4, there exist double helixes in the 3D framework based on the chair-like cluster cores. Complex 5 possesses a 2-fold interpenetration structure constructed from boat-like cluster core and the bridging ligands stp and bpy. For complex 6, the chair-like cluster cores and stp ligands form a 2D (4,4) network which is further pillared by bpp linkers to a 3D architecture. Magnetic studies indicate that complex 1 exhibits magnetic ordering below 4.9 K with spin canting, and complex 2 shows weak antiferromagnetic coupling between the Mn(II) ions with g = 2.02, J(wb) = -2.88 cm(-1), J(bb) = -0.37 cm(-1). The fluorescence studies show that the emissions of complexes 3-6 are attributed to the ligand π-π* transition.  相似文献   

9.
The NO2S2-donor macrocycle (L1) was synthesised from the ring closure reaction between Boc-N-protected 2,2'-iminobis(ethanethiol) (3) and 2,2'-(ethylenedioxy)bis(benzyl chloride) (4) followed by deprotection of the Boc-group. alpha,alpha'-Dibromo-p-xylene was employed as a dialkylating agent to bridge two L1 to yield the corresponding N-linked product (L2). The X-ray structure of L2 (as its HBr salt) is described. A range of Cd(II) and Hg(II) complexes of L1 (6-9) and L2 (10-12) were prepared and characterised. Reaction of HgX2 (X = Br or I) with L1 afforded [Hg(L1)Br]2[Hg2Br6].2CH2Cl2 6 and [Hg(L1)I(2)] 7, respectively. For 6, the Hg(II) ion in the complex cation has a distorted tetrahedral coordination environment composed of S2N donor atoms from L1 and a bromo ligand. In 7 the coordination geometry is highly distorted tetrahedral, with the macrocycle coordinating in an exodentate manner via one S and one N atom. The remaining two coordination sites are occupied by iodide ions. [Hg(L1)(ClO4)]ClO4 8 was isolated from the reaction of Hg(ClO4)2 and L1. The X-ray structure reveals that all macrocyclic ring donors bind to the central mercury ion in this case, with the latter exhibiting a highly distorted octahedral coordination geometry. The O2S2-donors from the macrocyclic ring define the equatorial plane while the axial positions are occupied by the ring nitrogen as well as by an oxygen from a monodentate perchlorato ion. Reaction of Cd(NO3)(2).4H2O with L1 afforded [Cd(L1)(NO3)2](.)0.5CH2Cl2 9 in which L1 acts as a tridentate ligand, binding exo-fashion via its S2N donors. The remaining coordination positions are filled by two bidentate nitrate ions such that, overall, the cadmium is seven-coordinate. Reactions of HgX2(X = Br or I) with L2 yielded the isostructural 2 : 1 (metal : ligand) complexes, [Hg2(L2)Br4] 10 and [Hg2(L2)I(4)] 11. Each mercury ion has a distorted tetrahedral environment made up of S and N donors from an exodentate L2 and two coordinated halides. Contrasting with this, the reaction of L2 with Cd(NO3)(2).4H2O yielded a 1-D coordination network, {[Cd2(L2)(NO3)4].2CH2Cl2}n 12 in which each ring of L2 is exo-coordinated via two S atoms and one N atom to a cadmium ion which is also bound to one monodentate and one bidentate nitrate anion. The latter also has one of its oxygen atom attached to a neighboring cadmium via a nitroso (mu2-O) bridge such that the overall coordination geometry about each cadmium is seven-coordinate. The [Cd(L2)0.5(NO3)2] units are linked by an inversion to yield the polymeric arrangement.  相似文献   

10.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

11.
The salts of Zn(II), Cd(ii) and Hg(II) react instantaneously with Kpmf (pmf(-) = anion of N,N'-bis(pyrimidine-2-yl)formamidine, Hpmf) in THF, producing bimetallic complexes of the types [M(2)(pmf)(3)](X) (M = Zn(II), X = I(3)(-), ; M = Zn(II), X = NO(3)(-), ; M = Zn(II), X = ClO(4)(-), ; M = Cd(II), X = NO(3)(-), ; M = Cd(II), X = ClO(4)(-), ) and Hg(2)(pmf)(2)X(2) (X = Cl, ; Br, ; I, ). New tridentate and tetradentate coordination modes were observed for the pmf(-) ligands and their fluxional behaviors investigated by measuring variable-temperature (1)H NMR spectra. Complexes and , which possess only tetradentate coordination modes for the pmf(-) ligands in the solid state show larger free energy of activation (DeltaG(c)( not equal)) for the exchange than complexes and with tetradentate and/or tridentate coordination modes. Complexes and are the first dinuclear Zn(II) and Hg(II) complexes containing formamidinate ligands. Moreover, the separation between the two Hg(II) atoms are 3.4689(9), 3.4933(13) and 3.5320(10) A for complexes , respectively, similar to the sum of van der Waals radii of two Hg(II) atoms which is 3.50(7) A. All the complexes exhibit emissions and the nature of the anions hardly change the emission wavelengths of the complexes with the same metal centers. The emission bands may be tentatively assigned as intraligand (IL) pi-->pi* transitions.  相似文献   

12.
The first examples of polymeric complexes that contain the polynitrile dianion hexacyanotrimethylenecyclopropanediide (HCTMCP(2-)) were isolated and their magnetic properties have been explored. Complexes of the form (n-TBA)(2)[M(HCTMCP)(2)(H(2)O)(2)] (1) (M = Mn(II), Fe(II), Co(II), Cd(II)) possess (4,4) sheet structures with large cavities that contain the tetra-n-butylammonium (n-TBA) countercations. Synthesis using sodium as the countercation yields a family of products with the general form [M(S)(4)M(S)(2)(HCTMCP)(2)] (S = EtOH, M = Fe(II) (2); S = MeOH, M = Co(II) or Zn(II) (3)). These complexes adopt a variety of two-dimensional (2D) structures. The complex [Mn(3)(HCTMCP)(2)(H(2)O)(12)](HCTMCP)·6(H(2)O) (4) contains cationic (6,3) sheets with the counteranion and solvent molecules encapsulated within the hexagonal windows. Complexes 1-4 display weak antiferromagnetic coupling in all cases. The first example of a complex that contains the CN-coordinated monoanionic radical HCTMCP (?-), [Cu(HCTMCP)(MeCN)(2)] (5) is described. This one-dimensional (1D) coordination polymer, containing tetrahedral Cu(I) centers, displays medium strength antiferromagnetic coupling that is mediated through π-interactions between the radical anions on adjacent chains.  相似文献   

13.
The redox-active fac-[Mo(V)(mp)(3)](-) (mp: o-mercaptophenolato) bearing asymmetric O- and S-cation binding sites can bind with several kinds of metal ions such as Na(+), Mn(II), Fe(II), Co(II), Ni(II), and Cu(I). The fac-[Mo(V)(mp)(3)](-) metalloligand coordinates to Na(+) to form the contact ion pair {Na(+)(THF)(3)[fac-Mo(V)(mp)(3)]} (1), while a separated ion pair, n-Bu(4)N[fac-Mo(V)(mp)(3)] (2), is obtained by exchanging Na(+) with n-Bu(4)N(+). In the presence of asymmetric binding-sites, the metalloligand reacts with Mn(II)Cl(2)·4H(2)O, Fe(II)Cl(2)·4H(2)O, Co(II)Cl(2)·6H(2)O, and Ni(II)Cl(2)·6H(2)O to afford UV-vis-NIR spectra, indicating binding of these guest metal cations. Especially, for the cases of the Mn(II) and Co(II) products, trinuclear complexes, {M(H(2)O)(MeOH)[fac-Mo(V)(mp)(3)](2)}·1.5CH(2)Cl(2) (3·1.5CH(2)Cl(2) (M = Mn(II)), 4·1.5CH(2)Cl(2) (M = Co(II))), are successfully isolated and structurally characterized where the M are selectively bound to the hard O-binding sites of the fac-[Mo(V)(mp)(3)](-). On the other hand, a coordination polymer, {Cu(I)(CH(3)CN)[mer-Mo(V)(mp)(3)]}(n) (5), is obtained by the reaction of fac-[Mo(V)(mp)(3)](-) with [Cu(I)(CH(3)CN)(4)]ClO(4). In sharp contrast to the cases of 1, 3·1.5CH(2)Cl(2), and 4·1.5CH(2)Cl(2), the Cu(I) in 5 are selectively bound to the soft S-binding sites, where each Cu(I) is shared by two [Mo(V)(mp)(3)](-) with bidentate or monodentate coordination modes. The second notable feature of 5 is found in the geometric change of the [Mo(V)(mp)(3)](-), where the original fac-form of 1 is isomerized to the mer-[Mo(V)(mp)(3)](-) in 5, which was structurally and spectroscopically characterized for the first time. Such isomerization demonstrates the structural flexibility of the [Mo(V)(mp)(3)](-). Spectroscopic studies strongly indicate that the association/dissociation between the guest metal ions and metalloligand can be modulated by solvent polarity. Furthermore, it was also found that such association/dissociation features are significantly influenced by coexisting anions such as ClO(4)(-) or B(C(6)F(5))(4)(-). This suggests that coordination bonds between the guest metal ions and metalloligand are not too static, but are sufficiently moderate to be responsive to external environments. Moreover, electrochemical data of 1 and 3·1.5CH(2)Cl(2) demonstrated that guest metal ion binding led to enhance electron-accepting properties of the metalloligand. Our results illustrate the use of a redox-active chalcogenolato complex with a simple mononuclear structure as a multifunctional metalloligand that is responsive to chemical and electrochemical stimuli.  相似文献   

14.
A bis(pyridine-armed) acyclic Schiff base ligand L1 has been synthesised from 3,6-diformylpyridazine and two equivalents of 2-(2-aminoethyl)pyridine. Reduction of this ligand using NaBH(4) resulted in the formation of the amine analogue L2. Complexes of the form [M(2)L1(mu-X)]Y(2)ClO(4)[where: M = Cu(II), X = OH(-) and Y = ClO(4)(-) 1, Cl(-) 2, Br(-) 3 or I(-) 4; M = Co(II), X = OH(-) and Y = ClO(4)(-) 5; M = Ni(II), X = SCN(-) 6 or X = N(3)(-) 7 and Y = ClO(4)(-)], and [Cu(2)L2(mu-OH)](ClO(4))(3) 8 were prepared and characterised. The complexes 1 and 5-7 have been characterised by single-crystal X-ray diffraction. The acyclic L1 ligand provides three nitrogen donor atoms per metal centre, including a pyridazine bridge between the metal centres, and the anion X also bridges the two metal centres. As required, coordinating solvent molecules or additional anions make up the remainder of the coordination sphere. The two copper centres of 1 are very strongly antiferromagnetically coupled (2J=-1146 cm(-1))via the pyridazine and hydroxide ion bridges, whereas the competing antiferromagnetic pyridazine bridging pathway and ferromagnetic 1,1-bridging azide pathway resulted in the observation of weak antiferromagnetic exchange in the dinickel(II) complex 7 (2J=-14 cm(-1)). Electrochemical examination of L1, L2 and complexes 1 and 5-8 revealed multiple redox processes. These have been tentatively assigned to a mixture of metal centred and ligand centred redox processes on the basis of cyclic voltammetry and coulometry results and comparisons with literature examples.  相似文献   

15.
Solvothermal reactions of 3,5-dimethyl-2,6-bis(3-(pyrid-2-yl)-1,2,4-triazolyl) pyridine (L), 1,4-benzendicarboxylic acid (H2bdc), and transitional metal cations of MII (M = Mn, Co, Cd) in the presence of oxalic acid (H2ox) afford three novel supramolecular polymers (CPs), namely, {[M2(ox)(L)2][bdc][M2(Hox)2(OH)2(H2O)4].3H2O}n (M=Mn for 1, Co for 2, Cd for 3). Single-crystal X-ray diffraction analysis reveals that complexes 1-3 are isostructural and the 3D supramolecular structure was connected through non-covalent interactions. With the help of H2ox, the L ligands cheated with center atoms forming a butterfly [M2(ox)(L)2]2+ building block. The bdc2- ligand linked with the unprecedented [M2(Hox)2(OH)2(H2O)4] units through strong O-H…O hydrogen bonds forming a zigzag chain, which are further connected through π…π interactions between L and bdc2- ligands to form a 3D supramolecular structure. Moreover, elemental analyses, IR, thermogravimetric, PXRD and luminescence have been investigated.  相似文献   

16.
In this contribution several new coordination compounds on the basis of cadmium(II) thio- and selenocyanate with pyrimidine as co-ligand were prepared and investigated for their structural, thermal and spectroscopic properties. The reaction of cadmium(II) thiocyanate with pyrimidine leads to the formation of four compounds, which from a structural point of view are closely related. In the most pyrimidine-rich 1 : 2 compound [Cd(NCS)(2)(pyrimidine)(2)](n) (1A) (1 : 2 = ratio between metal salt and the co-ligand pyrimidine) the Cd cations are linked by the pyrimidine ligands into layers and are additionally coordinated by two terminal N-bonded anions. In the 2 : 3 compound {[Cd(NCS)(2)](2)(pyrimidine)(3)}(n) (1B) the Cd cations are linked into chains by μ-1,3 bridging thiocyanato anions, which are connected into layers by only half of the pyrimidine ligands, whereas the other co-ligands are only terminal coordinated. Further reduction of the pyrimidine content leads to the formation of the 1 : 1 2D compound [Cd(NCS)(2)(pyrimidine)](n) (1CI) in which the terminal N-bonded thiocyanato anions become bridging. Surprisingly, crystallization experiments lead to the formation of an additional pyrimidine-deficient intermediate of composition {[Cd(NCS)(2)](3)(pyrimidine)(2)}(n) (1D), in which some of the μ-1,3 coordinated anions transform into μ-1,1,3 bridging thiocyanato anions. Consequently the four structures can be used as snapshots of intermediates on the way to a more condensed thiocyanato coordination network. In contrast, with cadmium selenocyanate only two different compounds were obtained. The 1 : 2 compound [Cd(NCSe)(2)(pyrimidine)(2)](n) (2A) is not isotypic to 1A and shows a completely different coordination topology whereas the pyrimidine-deficient 1 : 1 compound (2B) shows a more condensed network with μ-1,3 coordinating selenocyanato anions. On heating, the 1 : 2 compound 1A decomposes into Cd(NCS)(2)via a new polymorphic modification (1CII) as intermediate which is metastable, whereas the 1 : 2 selenocyanato compound 2A transforms into the 1 : 1 compound 2B on heating which cannot be obtained phase pure under these conditions. If faster heating rates are used, there are indications for the formation of a 3 : 2 compound, which is amorphous to X-rays. The results are compared with those obtained for related thio- and selenocyanato coordination polymers with pyridine, pyridazine and pyrazine as co-ligand. Moreover, their impact on the structures and thermal reactivity of analogous paramagnetic compounds is discussed in detail. Based on the structural data of compound 1D the unknown structures of two intermediates were determined, which are formed in the thermal decomposition reaction of the Mn and Fe thiocyanato pyrimidine coordination polymers, reported recently.  相似文献   

17.
The complexes of Cr(III), Mn(II) and Ni(II) were synthesized with macrocyclic ligand i.e. 5,11-dimethyl-6,12-diethyl-dione-1,2,4,7,9,10-hexazacyclododeca -1,4,6,10-tetraene. The ligand (L) was prepared by [2+2] condensation reaction of 2,3-pentanedione and semicarbazide hydrochloride. These complexes were found to have the general composition [Cr(L)X(2)]X and [M(L)X(2)] (where M=Mn(II) and Ni(II); X=Cl(-), NO(3)(-), (1/2)SO(4)(2-), NCS(-) and L=ligand [N(6)]). The ligand and its transition metal complexes were characterized by the elemental analysis, molar conductance, magnetic susceptibility, mass, IR, electronic and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for these complexes except sulphato complexes which are of five coordinated geometry.  相似文献   

18.
To study the conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylic acid (H(6)L), eleven new coordination polymers have been isolated from hydrothermal reactions of different metal salts with 1e,2a,3e,4a,5e,6a-cyclohexanehexacarboxylic acid (3e+3a, H(6)L(I)) and characterized. They are [Cd(12)(mu(6)-L(II))(mu(10)-L(II))(3)(mu-H(2)O)(6)(H(2)O)(6)]16.5 H(2)O (1), Na(12)[Cd(6)(mu(6)-L(II))(mu(6)-L(III))(3)]27 H(2)O (2), [Cd(3)(mu(13)-L(II))(mu-H(2)O)] (3), [Cd(3)(mu(6)-L(III))(2,2'-bpy)(3)(H(2)O)(3)]2 H(2)O (4), [Cd(4)(mu(4)-L(VI))(2)(4,4'-Hbpy)(4)(4,4'-bpy)(2)(H(2)O)(4)]9.5 H(2)O (5), [Cd(2)(mu(6)-L(II))(4,4'-Hbpy)(2)(H(2)O)(10)]5 H(2)O (6), [Cd(3)(mu(11)-L(VI))(H(2)O)(3)] (7), [M(3)(mu(9)-L(II))(H(2)O)(6)] (M=Mn (8), Fe (9), and Ni (10)), and [Ni(4)(OH)(2)(mu(10)-L(II))(4,4'-bpy)(H(2)O)(4)]6 H(2)O (11). Three new conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylate, 6e (L(II)), 4e+2a (L(III)) and 5e+1a (L(VI)), have been derived from the conformational conversions of L(I) and trapped in these complexes by controlling the conditions of the hydrothermal systems. Complexes 1 and 2 have three-dimensional (3D) coordination frameworks with nanoscale cages and are obtained at relatively low temperatures. A quarter of the L(I) ligands undergo a conformational transformation into L(II) while the others are transformed into L(III) in the presence of NaOH in 2, while all of the L(I) are transformed into L(II) in the absence of NaOH in 1. Complex 3 has a 3D condensed coordination framework, which was obtained under similar reaction conditions as 1, but at a higher temperature. The addition of 2,2'-bipyridine (2,2'-bpy) or 4,4'-bipyridine (4,4'-bpy) to the hydrothermal system as an auxiliary ligand also induces the conformational transformation of H(6)L(I). A new L(VI) conformation has been trapped in complexes 4-7 under different conditions. Complex 4 has a 3D microporous supramolecular network constructed from a 2D L(III)-bridged coordination layer structure by pi-pi interactions between the chelating 2,2'-bpy ligands. Complexes 5-7 have different frameworks with L(II)/L(VI) conformations, which were prepared by using different amounts of 4,4'-bpy under similar synthetic conditions. Both 5 and 7 are 3D coordination frameworks involving the L(VI) ligands, while 6 has a 3D microporous supramolecular network constructed from a 2D L(II)-bridged coordination layer structure by interlayer N(4,4'-Hbpy)--HO(L(II)) hydrogen bonds. 3D coordination frameworks 8-11 have been obtained from the H(6)L(I) ligand and the paramagnetic metal ions Mn(II), Fe(II), and Ni(II), and their magnetic properties have been studied. Of particular interest to us is that two copper coordination polymers of the formulae [{Cu(II) (2)(mu(4)-L(II))(H(2)O)(4)}{Cu(I) (2)(4,4'-bpy)(2)}] (12 alpha) and [Cu(II)(Hbtc)(4,4'-bpy)(H(2)O)]3 H(2)O (H(3)btc=1,3,5-benzenetricarboxylic acid) (12 beta) resulted from the same one-pot hydrothermal reaction of Cu(NO(3))(2), H(6)L(I), 4,4'-bpy, and NaOH. The Hbtc(2-) ligand in 12 beta was formed by the in situ decarboxylation of H(6)L(I). The observed decarboxylation of the H(6)L(I) ligand to H(3)btc may serve as a helpful indicator in studying the conformational transformation mechanism between H(6)L(I) and L(II-VI). Trapping various conformations in metal-organic structures may be helpful for the stabilization and separation of various conformations of the H(6)L ligand.  相似文献   

19.
We report synthesis of six new bis-nicotinamide metal(II) dihalide complexes [M(nia)(2)Cl(2); M = Mn, Co; nia:nicotinamide, M(nia)(2)Br(2); M = Mn, Hg; M(nia)(2)I(2); M = Cd, Cu], and their characterization by combining infrared spectroscopy with density functional theory (DFT) calculations. Infrared spectra indicate that ring-nitrogen is the active donor cite, and the atomic structure of the complexes is determined to be polymeric octahedral or distorted polymeric octahedral. Spin polarized electronic ground state is obtained for Mn, Co, and Cu halide complexes. The colors of the complexes also support the conclusion of octahedral coordination around the metal atoms, in agreement with DFT results.  相似文献   

20.
Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号