首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
H/D isotopic substitution neutron scattering and X-ray scattering have been used to investigate the short and intermediate range solution structure in a 1 m aqueous solution of lanthanum chloride. To improve the reliability of the local structural information on the cation environment, information has been incorporated from Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy data into the applied analytical framework. The markedly different structural sensitivities of the experimental probes allow the construction of a detailed three-dimensional atomistic model using the Empirical Potential Structure Refinement (EPSR) technique. The results show that at the investigated concentration La(3+) is hydrated by eight water molecules and one chloride ion, forming an inner-sphere ion complex in which the water molecules maintain angular configurations consistent with a tricapped trigonal prism configuration. This local geometry considerably disrupts the bulk solvent structure.  相似文献   

2.
Hydrogen/deuterium isotopic substitution neutron diffraction techniques have been used to measure the structural correlation functions of liquid tetrahydrofuran at room temperature. Empirical potential structure refinement (EPSR) has been used to build a three-dimensional model of the liquid structure that is consistent with the experimental data. Analysis to the level of the orientational correlation functions shows that the liquid displays a preference for T-like configurations between the tetrahydrofuran molecules, a local structure that results in void-like regions of approximately 1.25 angstroms radius within the bulk liquid. The surface chemistry of these voids suggests a slightly positive electrostatic character. These findings are consistent with the known propensity of the liquid to solvate free electrons.  相似文献   

3.
In the absence of neutron data, we have examined existing experimental data for X-ray, Raman scattering, EXAFS and thermodynamic activity studies in order to build up a consistent model of the structure of ZnCl2 in aqueous solution in the range of molality from 2 up to saturation. The structure that emerges is that Zn is tetrahedrally coordinated and that in these coordination complexes the number of Cl ions per Zn ion increases with increasing molality, this implying the existence of extended Zn structures as the saturation concentration is approached. Relevant evidence in support of these structural models has been obtained by measuring the diffusion constants of Zn. Cl and H2O when the stoichiometry of the solution is varied by replacing Zn by Li. This evidence strongly supports the model in which available Cl ions form complexes with Zn up to at least four Cl ions per Zn ion.  相似文献   

4.
The solvation properties of the Zn(2+) ion in methanol solution have been investigated using a combined approach based on molecular dynamics (MD) simulations and extended X-ray absorption fine structure (EXAFS) experimental results. The quantum mechanical potential energy surface for the interaction of the Zn(2+) ion with a methanol molecule has been calculated taking into account the effect of bulk solvent by the polarizable continuum model (PCM). The effective Zn-methanol interactions have been fitted by suitable analytical potentials, and have been utilized in the MD simulation to obtain the structural properties of the solution. The reliability of the whole procedure has been assessed by comparing the theoretical structural results with the EXAFS experimental data. The structural parameters of the first solvation shells issuing from the MD simulations provide an effective complement to the EXAFS experiments.  相似文献   

5.
Tight-binding, total-energy (TBTE ) models have been successfully used to calculate the equilibrium surface atomic structures of a variety of materials, but are difficult to apply to substances with complicated interatomic repulsions. In these cases, the modified neglect of diatomic overlap (MNDO ) method, which specifically includes longer-range interactions, may provide an effective alternative. We present new calculations of the surface atomic structure of the AlP (110) surface using both techniques. This surface, whose structure has been determined quantitatively using a low-energy, electron-diffraction intensity analysis, displays a well-known relaxation characteristic of (110) surfaces of zincblende-structure semiconductors. The TBTE model, parameterized to bulk AlP properties, provides a more accurate prediction of the relaxed surface atomic positions, although MNDO , parameterized to small molecules, produces acceptable results. Despite the greater demands placed by MNDO on computer resources, it may prove useful in the study of materials that are difficult to model within a TBTE framework. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
 Experimental and density functional theory geometries have been used to extend the AMBER force field to nitroxides. An optimum set of transferable atomic charges for the calculation of electrostatic interactions both in vacuo and in aqueous solution has been obtained by averaging the charges obtained by a restrained electrostatic potential fitting of representative compounds. Besides reliable structural data, our implementation allows the computation of accurate spectromagnetic properties by single-point B3LYP computations on geometries optimized at the AMBER level. Solvent shifts in aqueous solution can be reproduced quantitatively by a mixed model in which specific solvent effects are described by two water molecules strongly coordinated to the nitroxide oxygen, while bulk effects are described by the polarizable continuum model. Received: 17 September 1999 / Accepted: 3 February 2000 / Published online: 29 June 2000  相似文献   

7.
A finite element implementation of the transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-modified Stern (NPPMS) models is presented. The NPPMS model uses multipoint constraints to account for finite ion size, resulting in realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation is used to provide a limited check of the transient models for low surface potential and dilute bulk solutions. The effects of the surface potential and bulk molarity on the electric potential and ion concentrations as functions of space and time are studied. The ability of the models to predict realistic energy storage capacity is investigated. The predicted energy is much more sensitive to surface potential than to bulk solution molarity.  相似文献   

8.
The results are reported of the molecular dynamics simulations of the coherent static structure factor of molten AgI at 923 K using a polarizable ion model. This model is based on a rigid ion potential, to which the many body interactions due to the anions induced polarization are added. The calculated structure factor is in better agreement with recent neutron diffraction data than that obtained by using simple rigid ion pair potentials. The Voronoi-Delaunay method has been applied to study the relationship between voids in the spatial distribution of cations and the prepeak of the structure factor.  相似文献   

9.
A local atomic structure around titanium positions in Ti-bearing hibonite (CaAl12O19) has been studied. The structural models of substitution of different substitution defects Ti–Al in hibonite by titanium atoms have been considered. Optimization of structural models of hibonite has been done by means of density functional theory calculations using pseudopotential approximation as implemented in VASP 5.3 code. Gibbs free energies analysis has shown that models of substitution of M2 and M4 aluminum positions by titanium atoms are the most probable. For the most probable structural models of Ti-bearing hibonite theoretical X-ray absorption near-edge structure (XANES) spectra near the titanium K edge have been calculated. Significant differences in theoretical XANES spectra calculated for different structural models with non-optimized and optimized atomic structure have been demonstrated. Changes in the intensity of pre-edge structure of TiK XANES spectra for different substitution models of aluminum by titanium have been observed which relate to different titanium coordination in structural models. Energy shift of spectral features towards lower energy for optimized models implies increase of interatomic distances in local surroundings of Ti absorbing atoms.  相似文献   

10.
The bulk structure of the ionic liquid propylammonium nitrate (PAN) has been determined using neutron diffraction. Empirical potential structure refinement (EPSR) fits to the data show that PAN self-assembles into a quasi-periodic bicontinuous nanostructure reminiscent of an amphiphile L(3)-sponge phase. Atomic detail on the ion arrangements around the propylammonium cation and nitrate anion yields evidence of hydrogen bonding between ammonium and nitrate groups and of strong alkyl chain aggregation and interdigitation. The resultant amphiphilic PAN nanostructure is more pronounced than that previously determined for ethylammonium nitrate (EAN) or ethanolammonium nitrate (EtAN).  相似文献   

11.
Alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) and halide (F(-), Cl(-), Br(-), and I(-)) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Aqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4P EW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.  相似文献   

12.
Corrosion is a fundamental problem in electrochemistry and represents a mode of failure of technologically important materials. Understanding the basic mechanism of aqueous corrosion of metals such as Cu in presence of halide ions is hence essential. Using molecular dynamics simulations incorporating reactive force-field (ReaxFF), the interaction of copper substrates and chlorine under aqueous conditions has been investigated. These simulations incorporate effects of proton transfer in the aqueous media and are suitable for modeling the bond formation and bond breakage phenomenon that is associated with complex aqueous corrosion phenomena. Systematic investigation of the corrosion process has been carried out by simulating different chlorine concentration and solution states. The structural and morphological differences associated with metal dissolution in the presence of chloride ions are evaluated using dynamical correlation functions. The simulated atomic trajectories are used to analyze the charged states, molecular structure and ion density distribution which are utilized to understand the atomic scale mechanism of corrosion of copper substrates under aqueous conditions. Increased concentration of chlorine and higher ambient temperature were found to expedite the corrosion of copper. In order to study the effect of solution states on the corrosion resistance of Cu, partial fractions of proton or hydroxide in water were configured, and higher corrosion rate at partial fraction hydroxide environment was observed. When the Cl(-) concentration is low, oxygen or hydroxide ion adsorption onto Cu surface has been confirmed in partial fraction hydroxide environment. Our study provides new atomic scale insights into the early stages of aqueous corrosion of metals such as copper.  相似文献   

13.
The longest wavelength band of n-alkyl pyridinium iodides (NAPI) in solution, which is due to charge transfer processes within a contact ion pair species, serves as an empirical measure of solute-solvent interaction for a polar solute in polar solvents. An attempt has been made to correlate the energy of the transition with the chemical potential of the dipolar ion pair in a solvent. The latter quantity has been calculated using a dielectrically saturable Block-Walker reaction field model. It has been found that, for protic solvents there is a good linear correlation between the two parameters enabling the calculation of the transition energy in water. An alternative correlation involving the individual molecule dipole reaction field is also discussed. For dipolar aprotic solvents both correlations yield poorer results indicating a single parameter correlation is not sufficient. In alcoholic binary systems the solute-solvent interaction is a linear function of the bulk reaction fields of the component solvents. But in the case of aprotic-alcoholic solvents, where specificities of interaction differ, the solute sees an environment the composition of which differs from that of the bulk.  相似文献   

14.
The structure of the crystalline ammonia-bearing phase formed when ammonia monohydrate liquid is compressed to 3.5(1) GPa at ambient temperature has been solved from a combination of synchrotron x-ray single-crystal and neutron powder-diffraction studies. The solution reveals that rather than having the ammonia monohydrate (AMH) composition as had been previously thought, the structure has an ammonia hemihydrate composition. The structure is monoclinic with spacegroup P2(1)/c and lattice parameters a = 3.3584(5) ?, b = 9.215(1) ?, c = 8.933(1) ? and β = 94.331(8)° at 3.5(1) GPa. The atomic arrangement has a crowned hexagonal arrangement and is a layered structure with long N-D···N hydrogen bonds linking the layers. The existence of pressure-induced dehydration of AMH may have important consequences for the behaviour and differentiation of icy planets and satellites.  相似文献   

15.
Neutron diffraction with isotopic substitution (NDIS) experiments and molecular dynamics (MD) simulations have been used to characterize the structure of aqueous guanidinium carbonate (Gdm2CO3) solutions. The MD simulations found very strong hetero-ion pairing in Gdm2CO3 solution and were used to determine the best structural experiment to demonstrate this ion pairing. The NDIS experiments confirm the most significant feature of the MD simulation, which is the existence of strong hetero-ion pairing between the Gdm+ and CO3(2-) ions. The neutron structural data also support the most interesting feature of the MD simulation, that the hetero-ion pairing is sufficiently strong as to lead to nanometer-scale aggregation of the ions. The presence of such clustering on the nanometer length scale was then confirmed using small-angle neutron scattering experiments. Taken together, the experiment and simulation suggest a molecular-level explanation for the contrasting denaturant properties of guanidinium salts in solution.  相似文献   

16.
The combination of neutron diffraction with isotopic substitution (NDIS) experiments and molecular dynamics (MD) simulations to characterize the structuring in an aqueous solution of the denaturant guanidinium chloride is described. The simulations and experiments were carried out at a concentration of 3 m at room temperature, allowing for an examination of any propensity for ion association in a realistic solution environment. The simulations satisfactorily reproduced the principal features of the neutron scattering and indicate a bimodal hydration of the guanidinium ions, with the N-H groups making well-ordered hydrogen bonds in the molecular plane, but with the planar faces relatively deficient in interactions with water. The most striking feature of these solutions is the rich ion-ion ordering observed around the guanidinium ion in the simulations. The marked tendency of the guanidinium ions to stack parallel to their water-deficient surfaces indicates that the efficiency of this ion as a denaturant is due to its ability to simultaneously interact favorably with both water and hydrophobic side chains of proteins.  相似文献   

17.
The hydration of the phosphocholine headgroup in 1,2-dipropionyl-sn-glycero-3-phosphocholine (C(3)-PC) in solution has been determined by using neutron diffraction enhanced with isotopic substitution in combination with computer simulation techniques. The atomic scale hydration structure around this head group shows that both the -N(CH(3))(3) and -CH(2) portions of the choline headgroup are strongly associated with water, through a unique hydrogen bonding regime, where specifically a hydrogen bond from the C-H group to water and a strong association between the water oxygen and N(+) atom in solution have both been observed. In addition, both PO(4) oxygens (P=O) and C=O oxygens are oversaturated when compared to bulk water in that the average number of hydrogen bonds from water to both X=O oxygens is about 2.5 for each group. That water binds strongly to the glycerol groups and is suggestive that water may bind to these groups when phosophotidylcholine is embedded in a membrane bilayer.  相似文献   

18.
Solution chemistry of Pd(II) and Pt(II) complexes is relevant to many fields of chemistry given the widespread applications of their compounds in homogeneous and heterogeneous catalysis, intermediate reaction synthesis, and antitumoral drugs. The well-defined square-planar arrangement of their complexes contrasts with the rather diffuse axial environment in solution. A theoretical proposal for a characteristic hydration shell in this axial region, called the meso-shell, stimulated further experimental and theoretical studies which have led to different pictures. The present work characterizes the structure of the axial region of the Pd(II) aqua ion in solution using a combination of neutron and X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy, with empirical potential structure refinement (EPSR). The results confirm the existence of the axial region and structurally characterize the water molecules within it. An important finding not previously reported is that the counterion, in this case the perchlorate anion, competes with water molecules for the meso-shell occupancy. The important role played by the axial region in many ligand substitution reactions is therefore intimately connected with the presence of the counterion and not just hydration water. This must call the attention of the experimental community to the important role that the counterion of the precursor salt must play in the synthesis.  相似文献   

19.
The layered ternary nitride LiNiN shows an interesting combination of fast Li+ ion diffusion and metallic behavior, properties which suggest potential applications as an electrode material in lithium ion batteries. A detailed investigation of the structure and properties of LiNiN using powder neutron diffraction, ab initio calculations, SQUID magnetometry, and solid-state NMR is described. Variable-temperature neutron diffraction demonstrates that LiNiN forms a variant of the parent Li3N structure in which Li+ ion vacancies are ordered within the [LiN] planes and with Ni exclusively occupying interlayer positions (at 280 K: hexagonal space group Pm2, a = 3.74304(5) A, c = 3.52542(6) A, Z = 1). Calculations suggest that LiNiN is a one-dimensional metal, as a result of the mixed pi- and sigma-bonding interactions between Ni and N along the c-axis. Solid-state 7Li NMR spectra are consistent with both fast Li+ motion and metallic behavior.  相似文献   

20.
To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号