首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Every real polynomial of degree n in one variable with root ?1 can be represented as the Schur-Szeg? composition of n ? 1 polynomials of the form (x + 1) n?1(x + a i ), where the numbers a i are uniquely determined up to permutation. Some a i are real, and the others form complex conjugate pairs. In this note, we show that for each pair (ρ, r), where 0 ? ρ, r ? [n/2], there exists a polynomial with exactly ρ pairs of complex conjugate roots and exactly r complex conjugate pairs in the corresponding set of numbers a i .  相似文献   

2.
Let d ? 3 be an integer, and set r = 2d?1 + 1 for 3 ? d ? 4, \(\tfrac{{17}}{{32}} \cdot 2^d + 1\) for 5 ? d ? 6, r = d2+d+1 for 7 ? d ? 8, and r = d2+d+2 for d ? 9, respectively. Suppose that Φ i (x, y) ∈ ?[x, y] (1 ? i ? r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,..., λ r are nonzero real numbers with λ12 irrational, and λ1Φ1(x1, y1) + λ2Φ2(x2, y2) + · · · + λ r Φ r (x r , y r ) is indefinite. Then for any given real η and σ with 0 < σ < 22?d, it is proved that the inequality
$$\left| {\sum\limits_{i = 1}^r {{\lambda _i}\Phi {}_i\left( {{x_i},{y_i}} \right) + \eta } } \right| < {\left( {\mathop {\max \left\{ {\left| {{x_i}} \right|,\left| {{y_i}} \right|} \right\}}\limits_{1 \leqslant i \leqslant r} } \right)^{ - \sigma }}$$
has infinitely many solutions in integers x1, x2,..., x r , y1, y2,..., y r . This result constitutes an improvement upon that of B. Q. Xue.
  相似文献   

3.
Define T(d, r) = (d + 1)(r - 1) + 1. A well known theorem of Tverberg states that if nT(d, r), then one can partition any set of n points in Rd into r pairwise disjoint subsets whose convex hulls have a common point. The numbers T(d, r) are known as Tverberg numbers. Reay added another parameter k (2 ≤ kr) and asked: what is the smallest number n, such that every set of n points in Rd admits an r-partition, in such a way that each k of the convex hulls of the r parts meet. Call this number T(d, r, k). Reay conjectured that T(d, r, k) = T(d, r) for all d, r and k. In this paper we prove Reay’s conjecture in the following cases: when k ≥ [d+3/2], and also when d < rk/r-k - 1. The conjecture also holds for the specific values d = 3, r = 4, k = 2 and d = 5, r = 3, k = 2.  相似文献   

4.
The problem considered here can be viewed as the analogue in higher dimensions of the one variable polynomial interpolation of Lagrange and Newton. Let x1,...,xr be closed points in general position in projective spacePn, then the linear subspaceV ofH0 (?n,O(d)) (the space of homogeneous polynomials of degreed on ?n) formed by those polynomials which are singular at eachxi, is given by r(n + 1) linear equations in the coefficients, expressing the fact that the polynomial vanishes with its first derivatives at x1,...,xr. As such, the “expected” value for the dimension ofV is max(0,h0(O(d))?r(n+1)). We prove thatV has the “expected” dimension for d≥5 (theorem A). This theorem was first proven in [A] using a very complicated induction with many initial cases. Here we give a greatly simplified proof using techniques developed by the authors while treating the corresponding problem in lower degrees.  相似文献   

5.
An (a, d)-edge-antimagic total labeling of a graph G is a bijection f from V(G) ∪ E(G) onto {1, 2,…,|V(G)| + |E(G)|} with the property that the edge-weight set {f(x) + f(xy) + f(y) | xyE(G)} is equal to {a, a + d, a + 2d,...,a + (|E(G)| ? 1)d} for two integers a > 0 and d ? 0. An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on the vertices. In this paper, we completely settle the problem of the super (a, d)-edge-antimagic total labeling of the complete bipartite graph Km,n and obtain the following results: the graph Km,n has a super (a, d)-edge-antimagic total labeling if and only if either (i) m = 1, n = 1, and d ? 0, or (ii) m = 1, n ? 2 (or n = 1 and m ? 2), and d ∈ {0, 1, 2}, or (iii) m = 1, n = 2 (or n = 1 and m = 2), and d = 3, or (iv) m, n ? 2, and d = 1.  相似文献   

6.
Let R be a prime ring of characteristic different from 2, let Q be the right Martindale quotient ring of R, and let C be the extended centroid of R. Suppose that G is a nonzero generalized skew derivation of R and f(x 1,..., x n ) is a noncentral multilinear polynomial over C with n noncommuting variables. Let f(R) = {f(r 1,..., r n ): r i ∈ R} be the set of all evaluations of f(x 1,..., x n ) in R, while A = {[G (f(r 1,..., r n )), f(r 1,..., r n )]: r i ∈ R}, and let C R (A) be the centralizer of A in R; i.e., C R (A) = {a ∈ R: [a, x] = 0, ? x A }. We prove that if A ≠ (0), then C R (A) = Z(R).  相似文献   

7.
An n × n sign pattern A is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as A. Let Dn,r be an n × n sign pattern with 2 ≤ rn such that the superdiagonal and the (n, n) entries are positive, the (i, 1) (i = 1,..., r) and (i, i ? r + 1) (i = r + 1,..., n) entries are negative, and zeros elsewhere. We prove that for r ≥ 3 and n ≥ 4r ? 2, the sign pattern Dn,r is not potentially nilpotent, and so not spectrally arbitrary.  相似文献   

8.
We provide an optimal Berry-Esseen type inequality for Zolotarev’s ideal ζ3-metric measuring the difference between expectations of sufficiently smooth functions, like |·|3, of a sum of independent random variables X 1,..., X n with finite third-order moments and a sum of independent symmetric two-point random variables, isoscedastic to the X i . In the homoscedastic case of equal variances, and in particular, in case of identically distributed X 1,..., X n the approximating law is a standardized symmetric binomial one. As a corollary, we improve an already optimal estimate of the accuracy of the normal approximation due to Tyurin (2009).  相似文献   

9.
Let X 1, X 2,..., X n and Y 1, Y 2,..., Y n be two sequences of independent random variables which take values in ? and have finite second moments. Using a new probabilistic method, upper bounds for the Kolmogorov and total variation distances between the distributions of the sums \(\sum_{i=1}^{n}X_{i}\) and \(\sum_{i=1}^{n}Y_{i}\) are proposed. These bounds adopt a simple closed form when the distributions of the coordinates are compared with respect to the convex order. Moreover, they include a factor which depends on the smoothness of the distribution of the sum of the X i ’s or Y i ’s, in that way leading to sharp approximation error estimates, under appropriate conditions for the distribution parameters. Finally, specific examples, concerning approximation bounds for various discrete distributions, are presented for illustration.  相似文献   

10.
Let G be an abelian group of order n. The sum of subsets A1,...,Ak of G is defined as the collection of all sums of k elements from A1,...,Ak; i.e., A1 + A2 + · · · + Ak = {a1 + · · · + ak | a1A1,..., akAk}. A subset representable as the sum of k subsets of G is a k-sumset. We consider the problem of the number of k-sumsets in an abelian group G. It is obvious that each subset A in G is a k-sumset since A is representable as A = A1 + · · · + Ak, where A1 = A and A2 = · · · = Ak = {0}. Thus, the number of k-sumsets is equal to the number of all subsets of G. But, if we introduce a constraint on the size of the summands A1,...,Ak then the number of k-sumsets becomes substantially smaller. A lower and upper asymptotic bounds of the number of k-sumsets in abelian groups are obtained provided that there exists a summand Ai such that |Ai| = n logqn and |A1 +· · ·+ Ai-1 + Ai+1 + · · ·+Ak| = n logqn, where q = -1/8 and i ∈ {1,..., k}.  相似文献   

11.
The paper considers a simple Errors-in-Variables (EiV) model Yi = a + bXi + εξi; Zi= Xi + σζi, where ξi, ζi are i.i.d. standard Gaussian random variables, Xi ∈ ? are unknown non-random regressors, and ε, σ are known noise levels. The goal is to estimates unknown parameters a, b ∈ ? based on the observations {Yi, Zi, i = 1, …, n}. It is well known [3] that the maximum likelihood estimates of these parameters have unbounded moments. In order to construct estimates with good statistical properties, we study EiV model in the large noise regime assuming that n → ∞, but \({\epsilon ^2} = \sqrt n \epsilon _ \circ ^2,{\sigma ^2} = \sqrt n \sigma _ \circ ^2\) with some \(\epsilon_\circ^2, \sigma_\circ^2>0\). Under these assumptions, a minimax approach to estimating a, b is developed. It is shown that minimax estimates are solutions to a convex optimization problem and a fast algorithm for solving it is proposed.  相似文献   

12.
Let D be a division algebra with center F and K a (not necessarily central) subfield of D. An element aD is called left algebraic (resp. right algebraic) over K, if there exists a non-zero left polynomial a 0 + a 1 x + ? + a n x n (resp. right polynomial a 0 + x a 1 + ? + x n a n ) over K such that a 0 + a 1 a + ? + a n a n = 0 (resp. a 0 + a a 1 + ? + a n a n ). Bell et al. proved that every division algebra whose elements are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. In this paper we generalize this result and prove that every division algebra whose all multiplicative commutators are left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite provided that the center of division algebra is infinite. Also, we show that every division algebra whose multiplicative group of commutators is left (right) algebraic of bounded degree over a (not necessarily central) subfield must be centrally finite. Among other results we present similar result regarding additive commutators under certain conditions.  相似文献   

13.
Let {X i = (X 1,i ,...,X m,i )?, i ≥ 1} be a sequence of independent and identically distributed nonnegative m-dimensional random vectors. The univariate marginal distributions of these vectors have consistently varying tails and finite means. Here, the components of X 1 are allowed to be generally dependent. Moreover, let N(·) be a nonnegative integer-valued process, independent of the sequence {X i , i ≥ 1}. Under several mild assumptions, precise large deviations for S n = Σ i=1 n X i and S N(t) = Σ i=1 N(t) X i are investigated. Meanwhile, some simulation examples are also given to illustrate the results.  相似文献   

14.
Let Δ n,d (resp. Δ′ n,d ) be the simplicial complex and the facet ideal I n,d = (x 1... x d, x d?k+1... x 2d?k ,..., x n?d+1... x n ) (resp. J n,d = (x 1... x d , x d?k+1... x 2d?k ,..., x n?2d+2k+1... x n?d+2k , x n?d+k+1... x n x 1... x k)). When d ≥ 2k + 1, we give the exact formulas to compute the depth and Stanley depth of quotient rings S/J n,d and S/I n,d t for all t ≥ 1. When d = 2k, we compute the depth and Stanley depth of quotient rings S/Jn,d and S/I n,d , and give lower bounds for the depth and Stanley depth of quotient rings S/I n,d t for all t ≥ 1.  相似文献   

15.
We prove that for every n ∈ ? there exists a metric space (X, d X), an n-point subset S ? X, a Banach space (Z, \({\left\| \right\|_Z}\)) and a 1-Lipschitz function f: SZ such that the Lipschitz constant of every function F: XZ that extends f is at least a constant multiple of \(\sqrt {\log n} \). This improves a bound of Johnson and Lindenstrauss [JL84]. We also obtain the following quantitative counterpart to a classical extension theorem of Minty [Min70]. For every α ∈ (1/2, 1] and n ∈ ? there exists a metric space (X, d X), an n-point subset S ? X and a function f: S → ?2 that is α-Hölder with constant 1, yet the α-Hölder constant of any F: X → ?2 that extends f satisfies \({\left\| F \right\|_{Lip\left( \alpha \right)}} > {\left( {\log n} \right)^{\frac{{2\alpha - 1}}{{4\alpha }}}} + {\left( {\frac{{\log n}}{{\log \log n}}} \right)^{{\alpha ^2} - \frac{1}{2}}}\). We formulate a conjecture whose positive solution would strengthen Ball’s nonlinear Maurey extension theorem [Bal92], serving as a far-reaching nonlinear version of a theorem of König, Retherford and Tomczak-Jaegermann [KRTJ80]. We explain how this conjecture would imply as special cases answers to longstanding open questions of Johnson and Lindenstrauss [JL84] and Kalton [Kal04].  相似文献   

16.
Let X1, X2, … be a sequence of independent random variables and Sn = Σ i=1 n Xi and V n 2 = Σ i=1 n X i 2 . When the elements of the sequence are i.i.d., it is known that the self-normalized sum Sn=Vn converges to a standard normal distribution if and only if max1?i?n|Xi|/Vn→0 in probability and the mean of X1 is zero. In this paper, sufficient conditions for the self-normalized central limit theorem are obtained for general independent random variables. It is also shown that if max1?i?n|Xi|/Vn→0 in probability, then these sufficient conditions are necessary.  相似文献   

17.
Results on extrapolation withA∞ weights in grand Lebesgue spaces are obtained. Generally, these spaces are defined with respect to the productmeasure μ1 ×· · ·×μn onX1 ×· · ·×Xn, where (Xi, di, μi), i = 1,..., n, are spaces of homogeneous type. As applications of the obtained results, new one-weight estimates with A weights for operators of harmonic analysis are derived.  相似文献   

18.
Let a_1,..., a_9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a_1,..., a_9 are pairwise coprime and a_1 + + a_9 ≡ b(mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a_1,..., a_9, n) such that the cubic equation a_1p_1~3+ + a9p_9~3= b is solvable with p_j 《 P for all 1 ≤ j ≤ 9. It is proved that one can take P = max{|a_1|,..., |a_9|}~c+ |b|~(1/3) with c = 2. This improves upon the earlier result with c = 14 due to Liu(2013).  相似文献   

19.
Let a representation T of a semigroup G on a linear space X be given. We call xX a finite vector if its orbit T(G) is contained in a finite-dimensional subspace. In this paper, some statements about finite vectors are applied to the following problem. For a given positive integer n > 1, describe all continuous functions f : G → ? such that the function (x1,..., x n ) ? f(x1 + ? + x n ) can be polynomially expressed via functions of sums of fewer variables.  相似文献   

20.
Let X ? PN be an irreducible, non-degenerate variety. The generalized variety of sums of powers V S PHX(h) of X is the closure in the Hilbert scheme Hilbh (X) of the locus parametrizing collections of points {x1,..., xh} such that the (h -1)-plane >x1,..., xh> passes through a fixed general point p ∈ PN. When X = Vdn is a Veronese variety we recover the classical variety of sums of powers V S P(F, h) parametrizing additive decompositions of a homogeneous polynomial as powers of linear forms. In this paper we study the birational behavior of V S PHX(h). In particular, we show how some birational properties, such as rationality, unirationalityand rational connectedness, of V S PHX(h) are inherited from the birational geometry of variety X itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号