首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
纳米二氧化硅填充辐射硫化三元乙丙橡胶   总被引:2,自引:0,他引:2  
用辐射硫化法替代传统硫化法,并以纳米二氧化硅为填料成功制备了纳米填充型三元乙丙橡胶密封材料。研究结果表明,纳米二氧化硅对辐射硫化三元乙丙橡胶有明显的补强效果,其最佳用量为40phr;吸收剂量超过20kGy后,橡胶总体性能下降;硫化胶的凝胶含量随填料含量的增加而增加,且凝胶含量的增大有利于提高辐射硫化胶的性能。对所得辐射硫化胶的透气透水性进行测试,数据显示与传统硫化法相比,辐射硫化法制备的橡胶其透气率和透水率均明显下降,表明材料的密封性较好。  相似文献   

2.
主要研究了丁腈橡胶(NBR)/聚氯乙烯(PVC)/酚醛树脂(PR)/受阻酚AO60共混体系中PR、AO60和增塑剂癸二酸二丁酯(DS)的用量对硫化橡胶力学性能和阻尼性能的影响。在共混体系中添加不超过50phr的AO60,其硫化胶损耗因子-温度曲线仍呈现单峰特征,体系相容性良好。随着AO60含量的增加,硫化胶的玻璃化转变温度提高,阻尼峰值增大。拉伸强度及动态模量先随之增高,然后降低。随着PR含量的增加,硫化胶的拉伸强度随之增加,tanδ峰值温度升高,而阻尼峰值则先提高后降低。加入增塑剂,硫化胶的力学性能、储能模量及玻璃化转变温度都有不同程度的降低。  相似文献   

3.
研究了甘油增塑谷朊粉/淀粉混合体系的动态流变行为与单轴拉伸力学性能,考察了淀粉与水含量的影响.研究结果表明,含水量10%的混合体系储能模量(G′)随淀粉含量增大而增大,并在100℃出现橡胶平台.增塑谷朊粉在30℃呈现凝胶特性,在80℃出现交联网络结构.淀粉粒子可与小麦蛋白质形成复杂相互作用,阻碍蛋白质链段运动,导致模量与强度增加,断裂伸长率降低.含水量为20%与25%时,水份在淀粉粒子与蛋白质网络间起稀释和润滑作用,拉伸强度与断裂伸长率随淀粉含量的增高而降低.  相似文献   

4.
以蓖麻油(CTO)或三羟甲基丙烷(TMP)作为交联剂,合成了一系列自愈合聚氨酯弹性体(PU)。借助核磁共振仪和红外光谱仪分析了产物结构,通过电子拉力试验机研究了交联剂添加量对PU的力学性能以及自愈合性能的影响。结果表明:CTO和TMP均能提高PU的拉伸强度,但是断裂伸长率会降低。随着交联剂用量的增加,PU内部交联度提升,自愈合性能下降。当PPG与TMP的物质的量之比为6∶4时,自愈合能力消失。在交联剂用量相同的情况下,CTO交联PU的自愈合性能保留效果比TMP交联PU更好。随着CTO用量的增加,断裂后愈合PU的拉伸强度先增加后减小。当聚丙二醇(PPG)与CTO的物质的量之比为7∶3时,总体性能最佳,在提高样品拉伸强度的同时,其自愈合后的拉伸强度恢复率为80.95%。  相似文献   

5.
分别采用邻苯二甲酸二辛酯(DOP)、邻苯二甲酸二丁酯(DBP)、环氧大豆油(ESO)作为增塑剂制备碱木质素/HDPE复合材料.研究了不同种类增塑剂对复合材料力学性能的影响,结果表明,3种增塑剂都能提高复合材料的断裂拉伸率,其中DOP的效果最优,当DOP添加量为7.5 phr,复合材料的断裂拉伸率达146.28%,比未添加增塑剂的样品高62.4%.添加DOP制备复合材料,研究DOP对复合材料力学性能、断面形貌、流变性能的影响.复合材料的力学性能结果表明DOP含量的增加有利于复合材料断裂拉伸率的提高;SEM表明DOP的添加使复合材料的断面变的更加粗糙,材料韧性提高;流变性能结果表明DOP能降低复合材料的表观黏度(η)和复数黏度(η*),并且线性黏弹区随着DOP含量的增加而变窄,储能模量(G')和损耗模量(G″)也逐渐下降.分析认为,DOP分子吸附包覆在木质素微颗粒的表面,抑制了木质素微颗粒在HDPE相中的团聚,改善了木质素在HDPE中的分散状况,同时降低了木质素分子和聚乙烯分子链之间的作用力,从而改善了复合材料的力学性能和流变性能.  相似文献   

6.
以过硫酸铵为引发剂通过一步溶液聚合制备了由化学交联的聚丙烯酰胺(PAM)与聚乙烯吡咯烷酮(PVP)贯穿形成的PAM/PVP半互穿网络(semi-IPN)凝胶,着重研究了凝胶的机械性能。红外光谱、热重分析及拉伸实验分析可知PAM与PVP之间存在氢键作用。拉伸实验表明:在PAM中引入PVP,凝胶拉伸强度明显提高,m(PVP)/m(AM)=7.51%时制备的PAM/PVP semi-IPN凝胶拉伸强度比单纯化学交联的PAM增大64.67%;当AM=6mol/L,n(MBA)/n(AM)=1.67×10-4,m(PVP)/m(AM)=7.51%时,制备的凝胶机械性能较好,拉伸强度达到1.84MPa,断裂伸长率可达3322%;随着含水率增加,凝胶拉伸强度及断裂伸长率均有所降低。  相似文献   

7.
以经稀土化合物处理的高耐磨炭黑和丁腈胶乳为原料,以凝聚共沉法制备粉末丁腈橡胶.研究了分散剂和稀土化合物对粉末胶颗粒粒径及其硫化胶性能的影响.结果表明,粉末胶颗粒粒径随分散剂用量的增加而减小,随La3+用量的增加而增大.La3+改善了硫化胶的性能,特别是扯断伸长率和拉伸强度.进一步分析得出,硫化胶性能得以改善的根本原因是La3+改善了炭黑粒子在橡胶基体中的分散均匀性及其与橡胶基体的黏结牢固性.  相似文献   

8.
以木薯淀粉、马来酸酐、苯乙烯为原料,过硫酸钾为引发剂,通过溶液共聚合成了一系列苯乙烯改性淀粉树脂(SMS)。然后将改性淀粉同丁苯橡胶(SBR)、天然橡胶(NR)进行混炼、硫化模压成型,制得苯乙烯改性淀粉/丁苯橡胶/天然橡胶复合材料。采用红外光谱(IR)对苯乙烯改性淀粉接枝共聚物进行了结构表征。通过拉伸性能测试考察了不同苯乙烯含量的木薯淀粉接枝产物对丁苯橡胶/天然橡胶的力学性能的影响。结果表明,淀粉改性后,随着苯乙烯含量的增多,所得复合橡胶的拉伸强度与邵氏硬度均呈现先增加后降低的趋势。当苯乙烯用量为15%时所制得的苯乙烯改性淀粉/丁苯橡胶/天然橡胶复合材料的拉伸强度与邵氏硬度最大且优于未改性淀粉复合材料,其拉伸强度为2.0MPa,邵氏硬度为25.8HD。  相似文献   

9.
首先通过乳液聚合法合成了聚苯乙烯(PS)微球,该微球经浓硫酸磺化后得到了磺化聚苯乙烯(SPS)微球;然后将合成的SPS微球作为多功能交联点加入丙稀酰胺(AAm)化学水凝胶网络中制备了SPS-PAAm杂化水凝胶。通过扫描电镜、透射电镜观察了SPS微球及杂化水凝胶的微观结构。研究了SPS微球对SPS-PAAm杂化水凝胶的凝胶分数、溶胀性能和力学性能的影响。结果显示:随着SPS微球用量的增加,SPS-PAAm水凝胶的凝胶分数先增加后降低,平衡溶胀度降低;SPS微球的加入能改善水凝胶的力学性能,随着SPS含量的增加,水凝胶的拉伸强度和能量损耗增加;SPS微球和PAAm分子链间存在物理相互作用。  相似文献   

10.
通过原位聚合法, 以N-乙烯基吡咯烷酮(NVP)和黏土为原料制备了生物相容性有机-无机纳米复合水凝胶, 通过黏度、透明度、XRD及力学性能等研究了水凝胶体系的性质和微观结构. 结果显示, 单体NVP通过氢键作用吸附于黏土粒子周围, 从而有效阻止黏土颗粒的凝胶化; 通过对聚合过程透明度的变化、凝胶吸水性能以及拉伸力学性能分析发现, 其反应机理与丙烯酰胺类体系不同. 黏土颗粒间网链较短, 导致吸水率和断裂伸长率明显低于聚丙烯酰胺/黏土体系, 但模量和拉伸及压缩强度明显增加; XRD结果显示, 干凝胶中黏土颗粒呈有序排列, 随着黏土含量增加, 黏土粒子间距变小, 而在含水复合凝胶中, 黏土颗粒以剥离态均匀分散; 对于凝胶表面的细胞形态观察初步检验了此类纳米复合凝胶的细胞相容性, 未观察到显著不良影响.  相似文献   

11.
范天博  陈思  姜宇  蔡勋  亢萍  李莉  张利  刘云义 《应用化学》2019,36(7):790-797
重钙粉作为填充剂被广泛应用于橡胶加工过程,但由于其表面具有极性,分散性较差,导致与橡胶材料界面结合较差,影响了橡胶产品的抗拉强度、断裂伸长率等力学性能。 本文采用沉淀法,在CaCl2-H2O-NH3-CO2体系中生成碳酸钙直接结晶于重钙粉颗粒表面,实现对重钙粉的表面包覆,将n(CaCl2):n(重钙粉)=1:100、5:100、10:100的包覆重钙粉填充到天然橡胶和再生胶中,橡胶的力学性能与填充未包覆重钙粉的橡胶相比有了一定的提升。 通过比较,在填充量较大(8.5%、15%)时,包覆重钙粉橡胶产品在硬度、定伸应力等力学性能上要好于轻钙粉橡胶产品;在填充量(5%、8.5%)时,包覆重钙粉橡胶产品的抗拉强度、断裂伸长率接近于白炭黑,硬度高于白炭黑橡胶产品。  相似文献   

12.
The effect of different polyfunctional monomers (PFMs) as enhancing agents on the properties of natural rubber/styrene-butadiene rubber blend reinforced with 40 (phr) part per hundred part of rubber, by weight of HAF carbon black and vulcanized with gamma irradiation was investigated. The coagents N,N’ methylene diacrylamide (MDA), trimethylol propane-trimethacrylate (TMPTMA) and trimethylol-methane tetraacrylate (TMMTA) were used at a constant content of 5 phr. The physico-chemical properties such as tensile strength, tensile modulus at 100 % elongation, elongation at break, gel fraction and swelling number were studied. The results indicated that the properties are greatly improved by PFMs at lower doses. TMMTA as coagent is more effective than TMPTMA and MDA.  相似文献   

13.
Palm based fly ash (PFA) is a solid waste of palm oil processing industry which contains silica components. These components are typically used to improve the mechanical properties of rubber-based products. This research aims to study the effect of the PFA as a filler on the morphology and properties of thermoplastic vulcanizate (TPV) based on a mixture of natural rubber (NR) and polypropylene (PP). TPV samples were prepared using the internal mixer at a mass ratio of NR/PP 70/30. Maleated polypropylene (MA-g-PP) 5% mass was added as a compatibilizer, filler content was varied from 15 to 45 per hundred rubber (phr). Paraffin and palm oil were added as a plasticizer with contents of 5 to 50 phr. Other additives include ZnO 5 phr, stearic acid 2 phr, trimethylquinone 1 phr, mercaptodibenzo-thiozyldisulfide 0.6 phr and 3 phr sulfur. The results showed that the use of PFA provides good tensile strength properties, a relatively homogeneous morphology, and low water absorption rate. The use of paraffin plasticizer produces a higher tensile strength compared to palm oil, but the elongation at break which produced the contrary. The best morphology and tensile properties of TPV (NR/PP 70/30) are on PFA and paraffin contents of 30 phr and 25 phr, respectively.  相似文献   

14.
The present study investigated the effects of two types of natural rubber and different blend ratios on the cure, tensile properties and morphology of natural rubber/recycled chloroprene rubber blends. The blends of natural rubber/recycled chloroprene rubber were prepared by using laboratory two-roll mill. The result showed that the cure time prolonged with the addition of recycled chloroprene rubber (rCR). Comparability, natural rubber/recycled chloroprene rubber (SMR L/rCR) blendcured rapidly than epoxidized natural rubber/recycled chloroprene rubber (ENR 50/rCR) blend. The addition of rCRalso caused a decrement in the tensile strength and elongation at break for both rubber blends. The SMR L/rCR blendsshowed higher tensile strength and elongation at break compared to those of ENR 50/rCR blends at any blend ratios.  相似文献   

15.
Response surface methodology was used for predicting the optimal composition of vegetable oil and carbon black in rubber compounding. Central composite rotatable design for two variables at five levels was chosen as the experimental design. The data obtained from measurement of properties was fitted as a two variable second order equation and were plotted as contour plots using programme developed in MATLAB v.5. It is observed from the contour plots that the increase in cross-link density caused by the formation of rubber mono-layer from its multi-layer on increasing the carbon black loading upto the central point (50 phr) of experimental region increases 300% modulus and elongation at break and reduces the ultimate properties like tear strength and tensile strength. On the other-hand hardness increases with increase in solid inclusion of carbon black. From the contours it is observed that the addition of vegetable oil upto 2-3 phr, cross-link density increases due to its coupling action leading to increase in hardness and modulus and lowering of ultimate properties like tensile strength and elongation at break. Addition of further amount of vegetable oil shows less coupling and more plasticising effect leading to increase in tear strength, tensile strength and elongation at break and decrease in hardness and 300% modulus.  相似文献   

16.
Isotropic magnetorheological elastomers (MREs) consisting of ethylene-propylene-diene monomer (EPDM), carbon black and two different micron-sized iron particles (carbonyl iron powder (CIP) and bare iron powder (BIP)) were prepared for dynamic automotive applications such as tunable engine mounts, vibration absorbers and suspension bushings. The sample that contains 5 phr CIP and 60 phr carbon black has the best tensile strength, elongation at break and elastic modulus and the highest MR effect of 77%. Based on SEM and EDS, homogenous distribution of single CIP and its aggregates of 8 μm and larger BIP aggregates of 15–20 μm were observed with 30 phr loadings of CIP and BIP, respectively. EPDM/carbon black/CIP MREs show significant property improvements compared to EPDM/carbon black/BIP MREs. The system containing CIP particles has substantially lower damping factor, Payne effect, elastic modulus, hardness, aggregation behavior and higher tensile strength and elongation at break values compared to BIP system.  相似文献   

17.
Modification of epoxy resin using reactive liquid (ATBN) rubber   总被引:5,自引:0,他引:5  
Epoxy resins are widely utilised as high performance thermosetting resins for many industrial applications but unfortunately some are characterised by a relatively low toughness. In this respect, many efforts have been made to improve the toughness of cured epoxy resins by the introduction of rigid particles, reactive rubbers, interpenetrating polymer networks and engineering thermoplastics within the matrix.In the present work liquid amine-terminated butadiene acrylonitrile (ATBN) copolymers containing 16% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin using polyaminoimidazoline as a curing agent. The chemical reactions suspected to take place during the modification of the epoxy resin were monitored and evidenced using a Fourier transform infrared. The glass transition temperature (Tg) was measured using a differential scanning calorimeter. The mechanical behaviour of the modified epoxy resin was evaluated in terms of Izod impact strength (IS), critical stress intensity factor, and tensile properties at different modifier contents. A scanning electron microscope (SEM) was used to elucidate the mechanisms of deformation and toughening in addition to other morphological features. Finally, the adhesive properties of the modified epoxy resin were measured in terms of tensile shear strength (TSS).When modifying epoxy resin with liquid rubber (ATBN), all reactivity characteristics (gel time and temperature, cure time and exotherm peak) decreased. The infrared analysis evidenced the occurrence of a chemical reaction between the two components. Addition of ATBN led to a decrease in either the glass transition temperature and stress at break accompanied with an increase in elongation at break and the appearance of some yielding. As expected, the tensile modulus decreased slightly from 1.85 to about 1.34 GPa with increasing ATBN content; whereas a 3-fold increase in Izod IS was obtained by just adding 12.5 phr ATBN compared to the unfilled resin. It is obvious that upon addition of ATBN, the Izod IS increased drastically from 0.85 to 2.86 kJ/m2 and from 4.19 to 14.26 kJ/m2 for notched and unnotched specimens respectively while KIC varies from 0.91 to 1.49 MPa m1/2 (1.5-fold increase). Concerning the adhesive properties, the TSS increased from 9.14 to 15.96 MPa just by adding 5 phr ATBN. Finally SEM analysis results suggest rubber particles cavitation and localised plastic shear yielding induced by the presence of the dispersed rubber particles within the epoxy matrix as the prevailing toughening mechanism.  相似文献   

18.
Waste tire powder subjected to allylamine modification in the presence of ultraviolet (UV) radiation has been used to prepare polypropylene based thermoplastic vulcanizates with maleic anhydride polypropylene (MA‐PP) as compatibilizer. The effect of increasing the concentration of MA‐PP on performance characteristics like tensile strength, elongation and rheological properties have been investigated. X‐ray diffraction studies of the PP/waste tire powder blend indicate the disappearance of β crystalline peaks on addition of waste tire powder in the PP, whereas it is observed in the allylamine modified rubber powder loaded PP. Differential scanning calorimetry results further supported the above fact. The improvement in mechanical properties of the PP/allylamine modified rubber powder loaded thermoplastic vulcanizates has been explained in terms of βα transformation of PP crystals during straining of the samples and uniform dispersion of allylamine coated rubber powder in the PP matrix. The melt rheological properties of the thermoplastic vulcanizates loaded with modified rubber powder are higher than its counterpart due to the higher dispersion as a result of chemical interaction between the rubber powder surface with the MA‐PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In order to reduce the environmental pollution caused by waste rubber and to realize the recycling of resources, we proposed a facile method for the hydrophilic modification of waste rubber powder (HRP) and used it to reinforce a composite hydrogel. In the presence of toluene, dibenzoyl peroxide (BPO) diffused into the waste rubber powder. After the solvent was removed, BPO was adsorbed in the rubber powder, which was used to initiate the grafting polymerization of the acrylamide monomer on the rubber–water interface. As a result, the polyacrylamide (PAM) molecular chains were grafted onto the surface of the rubber powder to realize hydrophilic modification. The success of the grafting modification was confirmed by FTIR, contact angle testing, and thermogravimetric analysis. The hydrophilic modified waste rubber powder was used to reinforce the PAM hydrogel. Mechanical tests showed that the tensile strength and elongation at the break of the composite hydrogel reached 0.46 MPa and 1809%, respectively, which was much higher than those of pure PAM hydrogel. Such a phenomenon indicates that the waste rubber particles had a strengthening effect.  相似文献   

20.
The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0–100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号