首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microwave discharge propagating over the surface of a dielectric antenna is studied. It is experimentally shown that the velocity of discharge propagation over the surface is maximal early in microwave pulse application and grows with the applied power. The breakdown wave defines the velocity of the discharge at its early stages (t = 1–3 μs). Ambipolar diffusion governs the discharge propagation at the stage of its evolution (t= 3–100 μs), and, finally, slow surface combustion is possible only at the stationary stage of the discharge (t > 100 μs). The electric field is localized in a thin (∼1 mm) surface layer. High values of the reduced electric field, E/n = 100–500 Td, provide efficient energy deposition to the plasma, i.e., favor the rapid heating of the gas and the efficient generation of charged particles. This makes the discharge promising for hypersonic aerodynamics.  相似文献   

2.
Self-organized filaments in dielectric barrier glow discharges   总被引:1,自引:0,他引:1  
The filamentation of a plasma created by a dielectric barrier discharge in conditions of low pd products (i.e., Townsend breakdown and not streamer breakdown) is investigated both experimentally and with a two-dimensional numerical discharge model. Complex stationary and dynamical domains and filaments are observed experimentally. Some of the properties of these systems are reproduced by the model  相似文献   

3.
The characteristics of a single discharge in 0.01–0.2-cm air gaps are investigated under atmospheric pressure between the metal electrodes and in the presence of a polymer barrier on one of the electrodes. The experimentally determined surface charge density distributions are satisfactorily described by a 2D Gaussian function with the proposed parameters. In the uniform field, the breakdown voltage weakly depends on the presence of a dielectric barrier. At the same time, the change from the positive to negative polarity of the metal electrode leads to a manifold increase in the discharge current and in the surface charge. The breakdown occurs under considerable overvoltage; the estimates indicate the streamer mechanism of the breakdown.  相似文献   

4.
The paper describes the results of investigation of a discharge arising in vacuum on the surface of solid dielectric materials when irradiated by intense (up to 25 MW/cm2) electromagnetic centimeter wave radiation. When the density of the microwave energy flux exceeds some threshold value depending on the target material, a discharge emerges in the vicinity of the surface. Its emergence is associated with the evaporation of the target material and the breakdown of evaporated matter. The thus forming plasma initially has the form of a thin (on the wavelength scale) layer with the electron density of the order of 1016 cm?3. It is demonstrated experimentally that effective generation of multiply charged ions occurs in the plasma. The measured energy distribution of ions in expanding plasma agrees with the predicted distribution obtained in solving the problem on quasineutral expansion into vacuum of a localized bunch of collisionless plasma with cold ions.  相似文献   

5.
The effect of different parameters on the nature of the axial distribution of atoms evaporated from an electrode in a gas discharge is investigated. Theoretical calculations employing an analytical relation proposed earlier for the atomic concentration have been checked experimentally by changing the transport parameters and the (radial) dimensions of the atomic source. In the first case an arc discharge between graphite electrodes is used, and in the second case a pulsed discharge between metal electrodes, making it possible to localize and vary the dimensions of the source on the surface of the electrode. On the basis of these investigations, the experimentally observed breakdown of proportionality of the atomic concentrations and also the nonlinearity of the calibration graphs used in spectral analysis are explained.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 77–80, November, 1973.  相似文献   

6.
A particular case of a problem on interaction of plasma with a surface is examined experimentally. We study interaction of its own plasma with boundary surfaces in a low-pressure radio-frequency (RF) capacitive discharge (RFCD) by considering their functions. On the basis of the physical model of RFCD substantiated earlier, we examine experimentally the physical conditions taking place in a near-electrode layer of space discharge, which lead to formation of pulsed electron beams and highly non-equilibrium plasma electron energy spectrum. We verify experimentally the known fact that in RFCD it is possible to generate natural oscillating LC circuits modulating the discharge current, and the conditions of their excitation by their own electron beams are clarified.  相似文献   

7.
The existence of two forms of unipolar gas-breakdown discharge that depend on the pulse-repetition frequency and the polarity of high-voltage pulses is experimentally revealed. These two forms differ in their intensities, the distribution of luminescence on the discharge length, and their volt-ampere characteristics. The transition from one discharge form to another proceeds in a narrow frequency range and is caused by the breakdown of the near-electrode layer in some critical field under the inclusion of ion-electron emission process. The transition frequency increases with the growth of the gas pressure and a decrease of the pulse amplitude. The development of discharge instability and the hysteresis of its parameters are observed in the transition area.  相似文献   

8.
The dispersional properties of a surface magnetostatic wave (MSW) in a laminar structure consisting of ferrite film and a high-temperature superconducting (HTSC) layer are studied in detail. The propagation of surface MSW in this structure is investigated, and the dispersional equation is obtained; the granular character of the HTSC films and the influence of constant magnetic field are taken into account here. The magnetic field is responsible for breakdown of the Josephson layer of granular HTSC films and the appearance of nonsuperconducting layers close to the film surface. It follows from the calculation results that, when the HTSC film passes to the superconducting state, the dispersional characteristics of the MSW undergo a discontinuity. The magnitude of the discontinuity depends on the film thickness, the critical current, and the granule size. The results obtained may be used in designing various microelectronic devices based on granular HTSC films. Tomsk State Academy of Control Systems and Radioelectronics. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 72–77, June, 1996.  相似文献   

9.
Changes in the surface layer of melamineformaldehyde (MF-R) microparticles (spheres of the diameter 4.86 ± 0.07 μm) in a direct current glow discharge plasma in neon after their exposure to plasma for 10, 20, and 40 min have been studied experimentally. Microparticles were placed into the composition of ordered plasma-dust structures and were subsequently removed. The results of atomic force and electron microscopy studies of the surface layer profile are presented. An evaluation of the quantitative data on surface layer destruction and the character of its modification are discussed.  相似文献   

10.
赵远远  乔明  王伟宾  王猛  张波 《中国物理 B》2012,21(1):18501-018501
A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μ m thick thin-layer SOI.  相似文献   

11.
横向表面放电光泵浦源特性研究   总被引:4,自引:2,他引:2       下载免费PDF全文
 介绍了一种用以泵浦XeF(C-A)激光的横向表面放电辐射源,比较详细地研究了这种泵浦源的放电击穿特性、放电电流与充电电压及不同气体介质的关系、表面放电均匀性以及不同气体成分对表面放电辐射特性的影响。得到了放电击穿时间、放电峰值电流随充电电压、不同气体介质变化的曲线;分析了提高放电均匀性的途径,在电极长50cm、间距6cm、充电电压25kV条件下获得了均匀放电。获得了各种实验条件下放电辐射的光谱曲线;通过对辐射光谱的分析,研究了有利于光解离XeF2的最佳实验条件,当pAr:pN2=1:1时,放电在远紫外波段产生的辐射最强。  相似文献   

12.
The connection between the field nonuniformity at an electrode and the distribution of discharge initiation sites over its surface is described. The results of experiments on the breakdown of transformer oil in the cone-plane system of electrodes is analyzed within the framework of a multifractal model of the charge distribution [1]. The conclusion given in [1] that the regions with the maximum local field strength are not always the most probable sites for initiation of a discharge was experimentally confirmed. We observed the theoretically predicted transition of the discharge initiation sites at sharp points on the surface of a cone. For electrodes of stainless steel and transformer oil a value of the index relates the probability of initiation of a discharge to the local field strength was determined.Scientific — Research Institute of High Voltages at Tomsk Polytechnic Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 32–35, April, 1995.  相似文献   

13.
Low-energy dielectric-barrier controlled discharges in nitrogen are studied by undertaking electrical measurements to determine mechanisms controlling the transition from glow to streamer-like discharge. The highest and the lowest values of the frequency and the amplitude of power supply voltage leading to a glow discharge have been found dependent on the gas flow and the nature of the surface in contact with the discharge. These boundary values have been related to the criteria necessary for initiating a Townsend breakdown rather than a streamer breakdown commonly observed under such conditions. This implies: (1) that the seed electron density just before the breakdown is high enough to allow the development of numerous small avalanches under a low field avoiding the formation of only one large avalanche mechanism at the origin of the streamer formation; and (2) to let the time for ions issued from the first avalanches to reach the cathode before the electrical field becomes large enough to induce the formation of large avalanches. Practically, the transition from a Townsend breakdown to a streamer breakdown is analyzed from electrical measurements data coupled to the visual aspect of the discharge. Without any gas flow, the obtaining of an atmospheric pressure glow discharge (APGD) is mainly limited by the species etched from the surface in contact with the gas. Indeed, these species can be quenchers of the nitrogen metastable molecules, which are the species at the origin of the formation of seed electrons via the Penning effect. This limitation can be overcome by the use of a laminar gas flow. However, this type of gas flow through the discharge induces a depletion of N2 metastables and, consequently, influences the electron density at the entrance of the discharge, leading to a tendency on this part of the discharge to transit to a streamer-like one  相似文献   

14.
The progressive current degradation and breakdown behaviors of GaN-based light emitting diodes under high reversebias stress are studied by combining the electrical, optical, and surface morphology characterizations. The current features a typical "soft breakdown" behavior, which is linearly correlated to an increase of the accumulative number of electroluminescence spots. The time-to-failure for each failure site approximately obeys a Weibull distribution with slopes of about 0.67 and 4.09 at the infant and wear-out periods, respectively. After breakdown, visible craters can be observed at the device surface as a result of transient electrostatic discharge. By performing focused ion beam cuts coupled with scan electron microscope, we observed a local current shunt path in the surface layer, caused by the rapid microstructure deterioration due to significant current heating effect, consistent well with the optical beam induced resistance change observations.  相似文献   

15.
乔明  庄翔  吴丽娟  章文通  温恒娟  张波  李肇基 《中国物理 B》2012,21(10):108502-108502
Based on the theoretical and experimental investigation of a thin silicon layer(TSL) with linear variable doping(LVD) and further research on the TSL LVD with a multiple step field plate(MSFP),a breakdown voltage(BV) model is proposed and experimentally verified in this paper.With the two-dimensional Poisson equation of the silicon on insulator(SOI) device,the lateral electric field in drift region of the thin silicon layer is assumed to be constant.For the SOI device with LVD in the thin silicon layer,the dependence of the BV on impurity concentration under the drain is investigated by an enhanced dielectric layer field(ENDIF),from which the reduced surface field(RESURF) condition is deduced.The drain in the centre of the device has a good self-isolation effect,but the problem of the high voltage interconnection(HVI) line will become serious.The two step field plates including the source field plate and gate field plate can be adopted to shield the HVI adverse effect on the device.Based on this model,the TSL LVD SOI n-channel lateral double-diffused MOSFET(nLDMOS) with MSFP is realized.The experimental breakdown voltage(BV) and specific on-resistance(R on,sp) of the TSL LVD SOI device are 694 V and 21.3 ·mm 2 with a drift region length of 60 μm,buried oxide layer of 3 μm,and silicon layer of 0.15 μm,respectively.  相似文献   

16.
It is experimentally demonstrated that the electron energy distribution function (EEDF) and electron density in plasma of a little-studied pulse discharge of a unipolar gas breakdown (UGB) significantly vary in time. The revealed behavior of its plasma parameters is explained based on the proposed physical model of a UGB discharge.  相似文献   

17.
Impulse, alternating and direct voltage tests together with optical observations have been done under clean and polluted surface conditions with respect to bentonite, which is treated as a pollutant. The insulator materials tested were polymethyl methacrylate and polythene. Bentonite pollution may affect several surface flashover characteristics such as voltage at breakdown and 50% breakdown voltage under negative lightning impulse (1.2/50 μs) and the time to breakdown under wet condition for both negative and positive impulse voltage. There are four types of paths taken by the discharge channels, based on which the degree of degradation of the material surface may vary.  相似文献   

18.
Breakdown of inert gases in a homogeneous dc electric field is studied experimentally and theoretically at various distances L between the electrodes and radii R of the discharge tubes. It is shown that, for arbitrary geometric dimensions of the discharge chamber and cathode materials, the ratio of the breakdown electric field strength to the gas pressure holds constant at the breakdown curve minimum. A modified Paschen law is obtained, according to which the breakdown voltage is a function of both the product of the gas pressure by the distance L and the ratio L/R.  相似文献   

19.
The characteristic of surface arc plasma included millisecond and microsecond actuation in supersonic flow is investigated both experimentally and numerically. In the experiment, the discharge characteristic of surface arc plasma in quiescent air and supersonic flow is recorded. The stable oblique shock could be observed with millisecond actuation. And the unstable compressive wave could be also observed with microsecond actuation. In the numerical investigation, plasma actuation is defined as a source term with input power density from discharge VI characteristic, which is expected to better describe the influence of heating process. The numerical results are coincident with experimental results. In order to confirm the capability of surface arc plasma actuation to control supersonic flow, experimental investigations on control shock induced by ramp and separation of boundary layer induced by impinging shock are performed. All the results demonstrate the control effect of surface arc plasma actuation onto supersonic flow.  相似文献   

20.
We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号