首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
行人流连续模型直观地反映人群疏散过程中的疏散特征,本文基于行人流连续模型。研究行人在典型疏散场景下的疏散特征.在COMSOL中建立行人流连续模型及其方程,通过编写MATLAB代码,实现了连续模型及其循环求解框架.利用快速扫描法求解Eikonal方程得到背景场值,在每一步迭代循环中将背景场值作为模型的初始变量导入,调用COMSOL计算模块求解模型的瞬态控制方程.通过两个标准算例,重现了典型的行人流自组织现象,验证了连续模型的合理性.结果表明,本文的疏散仿真分析模型和计算程序是可靠的,疏散仿真分析可以为实际工程中的人员疏散方案的制定以及平面设计与安全布置等方面提供技术支撑.  相似文献   

2.
This paper introduces a new model of pedestrian flow, formulated within a measure-theoretic framework. It consists of a macroscopic representation of the system via a family of measures which, pushed forward by some flow maps, provide an estimate of the space occupancy by pedestrians at successive times. From the modeling point of view, this setting is particularly suitable for treating nonlocal interactions among pedestrians, obstacles, and wall boundary conditions. In addition, the analysis and numerical approximation of the resulting mathematical structures, which are the principal objectives of this work, follow more easily than for models based on standard hyperbolic conservation laws.  相似文献   

3.
In this paper, a new lattice hydrodynamic model for bidirectional pedestrian flow is proposed by considering the pedestrian’s visual field effect. The stability condition of this model is obtained by the linear stability analysis. The mKdV equation near the critical point is derived to describe the density wave of pedestrian jam by applying the reductive perturbation method. The phase diagram indicates that the phase transition occurs among the freely moving phase, the coexisting phase, and the uniformly congested phase below the critical point \(a_c\) . Furthermore, the analytical results show that the visual field effect plays an important role in jamming transition. To take into account the visual information about the motion of more pedestrian in front can improve efficiently the stability of pedestrian system. In addition, the numerical simulations are in accordance with the theoretical analysis.  相似文献   

4.
The adhesion of endothelial progenitor cells(EPCs) on endothelial cells(ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases.Here,the rolling and adhesion behavior of EPCs on ECs was studied numerically.A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow.The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model.The effect of tumor necrosis factor alpha(TNF-α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally.A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs.Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiff-ness of the cell and shear rate of the flow.It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered.Experimental results demonstrate that TNF-α enhanced the expressions of VCAM,ICAM,P-selectin and E-selectin in ECs,which supports the numerical results that the rolling velocity of EPC on TNF-α treated EC substrate decreases obviously compared with its velocity on the untreated one.It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell,an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.  相似文献   

5.
The design of mobile robots that can move without wheels or legs is an important engineering and technological problem.Self-propelling mechanisms consisting of a body that has contact with a rough surface and moveable internal masses are considered.Mathematical models of such systems are presented in this paper.First,a model of a vibration driven robot that moves along a rough horizontal plane with isotropic dry friction is studied.It is shown that by changing the off-resonance frequency detuning in sign,one can control the direction of motion of the system.In addition,a locomotion system which moves in an environment with anisotropic viscous friction is considered.For all models,the method of averaging to obtain an algebraic equation for the steady-state"average"velocity of the system is used. Prototypes were constructed to compare the theoretical results with experimental ones.  相似文献   

6.
With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Yakhot-Orszag renormalization group method to analyze the fluctuating field,the Reynolds-average terms in the Reynolds stress transport equation,such as the convective term,the pressure-gradient-velocity correlation term and the dissipation term,are modeled.Two numerical examples:turbulent flow past a backward-facing step and the fully developed flow in a rotating channel,are presented for testing the efficiency of the proposed second-order model.For these two numerical examples,the proposed model performs as well as the Gibson-Launder (GL) model,giving better prediction than the standard k-ε model,especially in the abilities to calculate the secondary flow in the backward-facing step flow and to capture the asymmetric turbulent structure caused by frame rotation.  相似文献   

7.
The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid numerical instability issues associated with artificial added mass effects, which are often encountered by standard loosely coupled (LC) and tightly coupled (TC) algorithms, when modeling the FSI response of flexible structures in incompressible flow. The artificial added mass effect is caused by the lag in exchange of interfacial displacements and forces between the fluid and solid solvers in partitioned algorithms. The artificial added mass effect is much more prominent for light/flexible structures moving in water, because the fluid forces are in the same order of magnitude as the solid forces, and because the speed at which numerical errors propagate in an incompressible fluid. The new HC algorithm avoids numerical instability issues associated with artificial added mass effects by embedding Theodorsen’s analytical approximation of the hydroelastic forces in the solution process to obtain better initial estimates of the displacements. Details of the new HC algorithm are presented. Numerical validation studies are shown for the forced pitching response of a steel and a plastic hydrofoil. The results show that the HC algorithm is able to converge faster, and is able to avoid numerical instability issues, compared to standard LC and TC algorithms, when modeling the transient FSI response of a plastic hydrofoil. Although the HC algorithm is only demonstrated for a NACA0009 hydrofoil subject to pure pitching motion, the method can be easily extended to model general 3-D FSI response and stability of complex, flexible structures in turbulent, incompressible, multiphase flows.  相似文献   

8.
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.  相似文献   

9.
Pedestrian flows in bounded domains with obstacles   总被引:3,自引:0,他引:3  
In this paper, we systematically apply the mathematical structures by time-evolving measures developed in a previous work to the macroscopic modeling of pedestrian flows. We propose a discrete-time Eulerian model, in which the space occupancy by pedestrians is described via a sequence of Radon-positive measures generated by a push-forward recursive relation. We assume that two fundamental aspects of pedestrian behavior rule the dynamics of the system: on the one hand, the will to reach specific targets, which determines the main direction of motion of the walkers; on the other hand, the tendency to avoid crowding, which introduces interactions among the individuals. The resulting model is able to reproduce several experimental evidences of pedestrian flows pointed out in the specialized literature, being at the same time much easier to handle, from both the analytical and the numerical point of view, than other models relying on nonlinear hyperbolic conservation laws. This makes it suitable to address two-dimensional applications of practical interest, chiefly the motion of pedestrians in complex domains scattered with obstacles.   相似文献   

10.
A dynamic spherical cavity-expansion penetration model is suggested herein to predict the penetration and perforation of concrete targets struck normally by ogivalnosed projectiles.Shear dilatancy as well as compressibility of the material in comminuted region are considered in the paper by introducing a dilatant-kinematic relation.A procedure is first presented to compute the radial stress at the cavity surface and then a numerical method is used to calculate the results of penetration and perforation with friction being taken into account.The influences of various target parameters such as shear strength,bulk modulus,density,Poisson’s ratio and tensile strength on the depth of penetration are delineated.It is shown that the model predictions are in good agreement with available experimental data.It is also shown that the shear strength plays a dominant role in the target resistance to penetration.  相似文献   

11.
A constrained interpolation profile CIP-based numerical tank is developed to simulate violent free surface flows.The numerical simulation is performed by the CIP-based Cartesian grid method,which is described in the present paper.The tangent of hyperbola for interface capturing(THINC) scheme is applied for capturing complex free surfaces.The new model is capable of simulating a flow with violently varied free surface.A series of computations are conducted to assess the developed algorithm and its versatility.These tests include the collapse of water column with and without an obstacle,sloshing in a fixed tank,the generation of regular waves in a tank,the generation of extreme waves in a tank.Excellent agreements are obtained when numerical results are compared with available analytical,experimental,and other numerical results.  相似文献   

12.
By Green’s function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter,with an eddy viscosity depending solely on the space coordinates),and thus its hazardous effect can be rationally controlled and minimized.To this end,we generalize a laminar water hammer equation of Wang et al.(J.Hydrodynamics,B2,51,1995) to include arbitrary initial condition and variable viscosity,and obtain its solution by Green’s function method.The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and,by adjusting the eddy viscosity coefficient,experimentally measured turbulent flow data.Optimal WH control principle is thereby constructed and demonstrated.  相似文献   

13.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.  相似文献   

14.
The present work discusses both the linear and nonlinear stability conditions of a viscous falling film down the outer surface of a solid vertical cylinder which moves in the direction of its axis with a constant velocity.After studying the linear conditions,a generalized nonlinear kinematic model is then derived to present the physical system.Applying the boundary conditions,analytical solutions are obtained using the long-wave perturbation method.In the first step,the normal mode method is used to characterize the linear behaviors.In the second step,the nonlinear film flow model is solved by using the method of multiple scales,to obtain Ginzburg-Landau equation.The influence of some physical parameters is discussed in both linear and nonlinear steps of the problem,and the results are displayed in many plots showing the stability criteria in various parameter planes.  相似文献   

15.
The average-passage equation system (APES) provides a rigorous mathematical framework for accounting for the unsteady blade row interaction through multistage compressors in steady state environment by introducing deterministic correlations (DC) that need to be modeled to close the equation system.The primary purpose of this study was to provide insight into the DC characteristics and the influence of DC on the time-averaged flow field of the APES.In Part 2 of this two-part paper,the influence of DC on the time-averaged flow field was systematically studied.Several time-averaging computations were conducted with various boundary conditions and DC for the downstream stator in a transonic compressor stage,by employing the CFD solver developed in Part 1 of this two-part paper.These results were compared with the time-averaged unsteady flow field and the steady one.The study indicated that the circumferentialaveraged DC can take into account major part of the unsteady effects on spanwise redistribution of flow fields in compressors.Furthermore,it demonstrated that both deterministic stresses and deterministic enthalpy fluxes are necessary to reproduce the time-averaged flow field.  相似文献   

16.
Steady-state periodical response is investigated for an axially moving viscoelastic beam with hybrid supports via approximate analysis with numerical confirmation. It is assumed that the excitation is spatially uniform and temporally harmonic. The transverse motion of axially moving beams is governed by a nonlinear partial-differential equation and a nonlinear integro-partial-differential equation. The material time derivative is used in the viscoelastic constitutive relation. The method of multiple scales is applied to the governing equations to investigate primary resonances under general boundary conditions. It is demonstrated that the mode uninvolved in the resonance has no effect on the steady-state response. Numerical examples are presented to demonstrate the effects of the boundary constraint stiffness on the amplitude and the stability of the steady-state response. The results derived for two governing equations are qualitatively the same,but quantitatively different. The differential quadrature schemes are developed to verify those results via the method of multiple scales.  相似文献   

17.
In this paper, an integrated smoothed particle hydrodynamics (SPH) model for complex interfacial flows with large density ratios is developed. The discrete continuity equation and acceleration equation are obtained by considering the time derivative of the volume of particle and Eckart's continuum Lagrangian equation. A continuum surface force model is used to meet the fact that surface force may not be distributed uniformly on each side of the interface. An improved boundary condition is imposed to model wall free-slip and no-slip condition for interfacial flows with large density ratios. Particle shifting algorithm (PSA) is added for interfacial flows by imposing the normal correction near the interface, called as Interface-PSA. Then four representative numerical examples, including droplet deformation, Rayleigh-Taylor instability, dam breaking, and bubble rising, are presented and compared well with reference data. It is demonstrated that inherent interfacial flow physics can be well captured, including surface tension and the dynamic evolution of the complex interfaces.  相似文献   

18.
The average-passage equation system (APES) provides a rigorous mathematical framework for accounting for the unsteady blade row interaction through multistage compressors in steady state environment by introducing deterministic correlations (DC) that need to be modeled to close the equation system.The primary purpose of this study is to provide insight into the DC characteristics and the influence of DC on the time-averaged flow field of the APES.In Part 1 of this two-part paper,firstly a 3D viscous unsteady and time-averaging flow CFD solver is developed to investigate the APES technique.Then steady and unsteady simulations are conducted in a transonic compressor stage.The results from both simulations are compared to highlight the significance of the unsteady interactions.Furthermore,the distribution characteristics of DC are studied and the DC at the rotor/stator interface are compared with their spatial correlations (SC).Lastly,steady and time-averaging (employing APES with DC) simulations for the downstream stator alone are conducted employing DC derived from the unsteady results.The results from steady and time-averaging simulations are compared with the time-averaged unsteady results.The comparisons demonstrate that the simulation employing APES with DC can reproduce the time-averaged field and the 3D viscous time-averaging flow solver is validated.  相似文献   

19.
An analysis is performed to study the heat transfer characteristics of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid. The effects of uniform suction and injection on the flow field and heat transfer characteristics are numerically studied by using an implicit finite difference method. It is found that dual solutions exist when the plate and the free stream move in the opposite directions. The results indicate that suction delays the boundary layer separation, while injection accelerates it.  相似文献   

20.
随着磁头滑块的飞行高度不断降低,给气体润滑方程的数值求解带来了诸如计算时间过长、甚至计算发散等方面的问题。为了获得1Tbit/in2的存储密度,磁头滑块尾部的最小飞行高度接近1.5nm。本文基于作者提出的修正气膜润滑方程的线性流率(LFR)模型,考虑磁头滑块表面高度的不连续性,建立了基于有限体积法的气膜润滑方程离散格式,并把网格自适应技术与多重网格法应用到离散方程的迭代算法中,发展了可模拟最小飞行高度为0.5nm时磁头滑块压力分布的数值模拟方法与有效算法。文中以一个具有复杂表面形状的磁头滑块为例,检验了计算方法与算法的有效性。数值结果表明:在磁头滑块最小飞行高度较低时,必须要考虑滑块表面高度的不连续性,否则就得不到收敛的数值计算结果;与FK-Boltzmann模型相比,LFR模型具有较高的计算效率,采用网格自适应技术与多重网格法能有效地提高求解气膜润滑方程的计算效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号