首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactions dynamics of the dicarbon molecule C2 in the 1Sigma (g)+ singlet ground state and 3Pi(u) first excited triplet state with allene, H2CCCH2(X1A1), was investigated under single collision conditions using the crossed molecular beam approach at four collision energies between 13.6 and 49.4 kJ mol(-1). The experiments were combined with ab initio electronic structure calculations of the relevant stationary points on the singlet and triplet potential energy surfaces. Our investigations imply that the reactions are barrier-less and indirect on both the singlet and the triplet surfaces and proceed through bound C5H4 intermediates via addition of the dicarbon molecule to the carbon-carbon double bond (singlet surface) and to the terminal as well as central carbon atoms of the allene molecule (triplet surface). The initial collision complexes isomerize to form triplet and singlet pentatetraene intermediates (H2CCCCCH2) that decompose via atomic hydrogen loss to yield the 2,4-pentadiynyl-1 radical, HCCCCCH2(X2B1). These channels result in symmetric center-of-mass angular distributions. On the triplet surface, a second channel involves the existence of a nonsymmetric reaction intermediate (HCCCH2CCH) that fragments through atomic hydrogen emission to the 1,4-pentadiynyl-3 radical [C5H3(X2B1)HCCCHCCH]; this pathway was found to account for the backward scattered center-of-mass angular distributions at higher collision energies. The identification of two resonance-stabilized free C5H3 radicals (i.e., 2,4-pentadiynyl-1 and 1,4-pentadiynyl-3) suggests that these molecules can be important transient species in combustion flames and in the chemical evolution of the interstellar medium.  相似文献   

2.
We investigated the multichannel reaction of ground-state carbon atoms with acetylene, C2H2 (X1Sigmag+), to form the linear and cyclic C3H isomers (atomic hydrogen elimination pathway) as well as tricarbon plus molecular hydrogen. The experiments were conducted under single-collision conditions at three different collision energies between 8.0 kJ mol-1 and 31.0 kJ mol-1. Our studies were complemented by crossed molecular beam experiments of carbon with three isotopomers C2D2(X1Sigmag+), C2HD (X1Sigma+), and 13C2H2 (X1Sigmag+) to clarify a potential intersystem crossing (ISC), the effect of the symmetry of the reaction intermediates on the center-of-mass angular distributions, the collision energy-dependent branching ratios of the atomic versus molecular hydrogen elimination pathways, and deuterium-enrichment processes. The results are discussed in light of recent electronic structure and dynamics calculations.  相似文献   

3.
The crossed molecular beams reaction of dicarbon molecules, C(2)(X(1)Σ(g)(+)/a(3)Π(u)) with vinylacetylene was studied under single collision conditions at a collision energy of 31.0 kJ mol(-1) and combined with electronic structure calculations on the singlet and triplet C(6)H(4) potential energy surfaces. The investigations indicate that both reactions on the triplet and singlet surfaces are dictated by a barrierless addition of the dicarbon unit to the vinylacetylene molecule and hence indirect scattering dynamics via long-lived C(6)H(4) complexes. On the singlet surface, ethynylbutatriene and vinyldiacetylene were found to decompose via atomic hydrogen loss involving loose exit transition states to form exclusively the resonantly stabilized 1-hexene-3,4-diynyl-2 radical (C(6)H(3); H(2)CCCCCCH; C(2v)). On the triplet surface, ethynylbutatriene emitted a hydrogen atom through a tight exit transition state located about 20 kJ mol(-1) above the separated stabilized 1-hexene-3,4-diynyl-2 radical plus atomic hydrogen product; to a minor amount (<5%) theory predicts that the aromatic 1,2,3-tridehydrobenzene molecule is formed. Compared to previous crossed beams and theoretical investigations on the formation of aromatic C(6)H(x) (x = 6, 5, 4) molecules benzene, phenyl, and o-benzyne, the decreasing energy difference from benzene via phenyl and o-benzyne between the aromatic and acyclic reaction products, i.e., 253, 218, and 58 kJ mol(-1), is narrowed down to only ~7 kJ mol(-1) for the C(6)H(3) system (aromatic 1,2,3-tridehydrobenzene versus the resonantly stabilized free radical 1-hexene-3,4-diynyl-2). Therefore, the C(6)H(3) system can be seen as a "transition" stage among the C(6)H(x) (x = 6-1) systems, in which the energy gap between the aromatic isomer (x = 6, 5, 4) is reduced compared to the acyclic isomer as the carbon-to-hydrogen ratio increases and the acyclic isomer becomes more stable (x = 1, 2).  相似文献   

4.
Ab initio calculations of the potential energy surface for the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction have been carried at the G2M level of theory. The calculations show that the dicarbon molecule in the ground singlet electronic state can add to methylacetylene without a barrier producing a three-member or a four-member ring intermediate, which can rapidly rearrange to the most stable H(3)CCCCCH isomer on the C(5)H(4) singlet surface. This isomer can then lose a hydrogen atom (H) or molecular hydrogen (H(2)) from the CH(3) group with the formation of H(2)CCCCCH and HCCCCCH, respectively. Alternatively, H atom migrations and three-member-ring closure/opening rearrangements followed by H and H(2) losses can lead to other isomers of the C(5)H(3) and C(5)H(2) species. According to the calculated energetics, the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH reaction is likely to be a major source of the C(5)H(3) radicals (in particular, the most stable H(2)CCCCCH and HCCCHCCH isomers, which are relevant to the formation of benzene through the reactions with CH(3)). Among heavy-fragment product channels, only C(3)H(3) + C(2)H and c-C(3)H(2) + C(2)H(2) might compete with C(5)H(3) + H and C(5)H(2) + H(2). RRKM calculations of reaction rate constants and product branching ratios depending on the reactive collision energy showed that the major reaction products are expected to be H(2)CCCCCH + H (64-66%) and HCCCHCCH + H (34-30%), with minor contributions from HCCCCCH + H(2) (1-2%), HCCCHCC + H(2) (up to 1%), C(3)H(3) + C(2)H (up to 1%), and c-C(3)H(2) + C(2)H(2) (up to 0.1%) if the energy randomization is complete. The calculations also indicate that the C(2)(X(1)Sigma(g)(+)) + CH(3)CCH(X(1)A(1)) reaction can proceed by direct H-abstraction of a methyl hydrogen to form C(3)H(3) + C(2)H almost without a barrier.  相似文献   

5.
Casavecchia P  Balucani N  Cartechini L  Capozza G  Bergeat A  Volpi GG 《Faraday discussions》2001,(119):27-49; discussion 121-43
The dynamics of some elementary reactions of N(2D), C(3P,1D) and CN(X2 sigma +) of importance in combustion have been investigated by using the crossed molecular beam scattering method with mass spectrometric detection. The novel capability of producing intense, continuous beams of the radical reagents by a radio-frequency discharge beam source was exploited. From angular and velocity distribution measurements obtained in the laboratory frame, primary reaction products have been identified and their angular and translational energy distributions in the center-of-mass system, as well as branching ratios, have been derived. The dominant N/H exchange channel has been examined in the reaction N(2D) + CH4, which is found to lead to H + CH2NH (methylenimine) and H + CH3N (methylnitrene); no H2 elimination is observed. In the reaction N(2D) + H2O the N/H exchange channel has been found to occur via two competing pathways leading to HNO + H and HON + H, while formation of NO + H2 is negligible. Formation of H + H2CCCH (propargyl) is the dominant pathway, at low collision energy (Ec), of the C(3P) + C2H4 reaction, while at high Ec formation of the less stable C3H3 isomers (cyclopropenyl and/or propyn-1-yl) also occurs; the H2 elimination channel is negligible. The H elimination channel has also been found to be the dominant pathway in the C(3P,1D) + CH3CCH reaction leading to C4H3 isomers and, again, no H2 elimination has been observed to occur. In contrast, both H and H2 elimination, leading in comparable ratio to C3H + H and C3(X1 sigma g+) + H2(X1 sigma g+), respectively, have been observed in the reaction C(3P) + C2H2(X1 sigma g+). The occurrence of the spin-forbidden molecular pathway in this reaction, never detected before, has been rationalized by invoking the occurrence of intersystem crossing between triplet and singlet manifolds of the C3H2 potential energy surfaces. The reaction CN(X2 sigma +) + C2H2 has been found to lead to internally excited HCCCN (cyanoacetylene) + H. For all the reactions the dynamics have been discussed in the light of recent theoretical calculations on the relevant potential energy surfaces. Previous, lower resolution studies on C and CN reactions carried out using pulsed beams are noted. Finally, throughout the paper the relevance of these results to combustion chemistry is considered.  相似文献   

6.
The elementary reaction of ground state boron atoms, (B((2)P(j))), with ammonia (NH(3)(X(1)A(1))) was conducted under single collision conditions at a collision energy of 20.5 ± 0.4 kJ mol(-1) in a crossed molecular beams machine. Combined with electronic structure calculations, our experimental results suggested that the reaction was initiated by a barrier-less addition of the boron atom to the nonbonding electron pair of the nitrogen atom forming a weakly bound BNH(3) collision complex. This intermediate underwent a hydrogen shift to a doublet HBNH(2) radical that decomposed via atomic hydrogen loss to at least the imidoborane (HBNH(X(1)Σ(+)) molecule, an isoelectronic species of acetylene (HCCH(X(1)Σ(g)(+))). Our studies are also discussed in light of the isoelectronic C(2)H(3) potential energy surface accessed via the isoelectronic carbon-methyl system.  相似文献   

7.
Dicarbon (C2), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas‐phase synthesis is presented of the benzyl radical (C6H5CH2) by the crossed molecular beam reaction of dicarbon, C2(X1Σg+, a3Πu), with 2‐methyl‐1,3‐butadiene (isoprene; C5H8; X1A′) accessing the triplet and singlet C7H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon–carbon double bond of the 2‐methyl‐1,3‐butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7H7 radical species through atomic hydrogen elimination. The benzyl radical (C6H5CH2), the thermodynamically most stable C7H7 isomer, is determined as the major product.  相似文献   

8.
The crossed beam reactions of the phenyl radical (C(6)H(5), X(2)A(1)) with 1,3-butadiene (C(4)H(6), X(1)A(g)) and D6-1,3-butadiene (C(4)D(6), X(1)A(g)) as well as of the D5-phenyl radical (C(6)D(5), X(2)A(1)) with 2,3-D2-1,3-butadiene and 1,1,4,4-D4-1,3-butadiene were carried out under single collision conditions at collision energies of about 55 kJ mol(-1). Experimentally, the bicyclic 1,4-dihydronaphthalene molecule was identified as a major product of this reaction (58 ± 15%) with the 1-phenyl-1,3-butadiene contributing 34 ± 10%. The reaction is initiated by a barrierless addition of the phenyl radical to the terminal carbon atom of the 1,3-butadiene (C1/C4) to form a bound intermediate; the latter underwent hydrogen elimination from the terminal CH(2) group of the 1,3-butadiene molecule leading to 1-phenyl-trans-1,3-butadiene through a submerged barrier. The dominant product, 1,4-dihydronaphthalene, is formed via an isomerization of the adduct by ring closure and emission of the hydrogen atom from the phenyl moiety at the bridging carbon atom through a tight exit transition state located about 31 kJ mol(-1) above the separated products. The hydrogen atom was found to leave the decomposing complex almost parallel to the total angular momentum vector and perpendicularly to the rotation plane of the decomposing intermediate. The defacto barrierless formation of the 1,4-dihydronaphthalene molecule involving a single collision between a phenyl radical and 1,3-butadiene represents an important step in the formation of polycyclic aromatic hydrocarbons (PAHs) and their partially hydrogenated counterparts in combustion and interstellar chemistry.  相似文献   

9.
A detailed investigation of the dynamics of the reactions of ground- and excited-state carbon atoms, C(3P) and C(1D), with acetylene is reported over a wide collision energy range (3.6-49.1 kJ mol-1) using the crossed molecular beam (CMB) scattering technique with electron ionization mass spectrometric detection and time-of-flight (TOF) analysis. We have exploited the capability of (a) generating continuous intense supersonic beams of C(3P, 1D), (b) crossing the two reactant beams at different intersection angles (45, 90, and 135 degrees ) to attain a wide range of collision energies, and (c) tuning the energy of the ionizing electrons to low values (soft ionization) to suppress interferences from dissociative ionization processes. From angular and TOF distribution measurements of products at m/z=37 and 36, the primary reaction products of the C(3P) and C(1D) reactions with C2H2 have been identified to be cyclic (c)-C3H + H, linear (l)-C3H + H, and C3 + H2. From the data analysis, product angular and translational energy distributions in the center-of-mass (CM) system for both the linear and cyclic C3H isomers as well as the C3 product from C(3P) and for l/c-C3H and C3 from C(1D) have been derived as a function of collision energy from 3.6 to 49.1 kJ mol-1. The cyclic/linear C3H ratio and the C3/(C3 + c/l-C3H) branching ratios for the C(3P) reaction have been determined as a function of collision energy. The present findings have been compared with those from previous CMB studies using pulsed beams; here, a marked contrast is noted in the CM angular distributions for both C3H- and C3-forming channels from C(3P) and their trend with collision energy. Consequently, the interpretation of the reaction dynamics derived in the present work contradicts that previously proposed from the pulsed CMB studies. The results have been discussed in the light of the available theoretical information on the relevant triplet and singlet C3H2 ab initio potential energy surfaces (PESs). In particular, the branching ratios for the C(3P) + C2H2 reaction have been compared with the available theoretical predictions (approximate quantum scattering calculations and quasiclassical trajectory calculations on ab initio triplet PESs and, very recent, statistical calculations on ab initio triplet PESs as well as on ab initio triplet/singlet PESs including nonadiabatic effects, that is, intersystem crossing). While the experimental branching ratios have been corroborated by the statistical predictions, strong disagreement has been found with the results of the dynamical calculations. The astrophysical implications of the present results have been noted.  相似文献   

10.
The reaction dynamics of boron monoxide (BO; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) were investigated under single collision conditions at a collision energy of 13 kJ mol(-1) employing the crossed molecular beam technique; electronic structure RRKM calculations were conducted to complement the experimental data. The reaction was found to have no entrance barrier and proceeded via indirect scattering dynamics initiated by an addition of the boron monoxide radical with its boron atom to the carbon-carbon triple bond forming the O(11)BHCCH intermediate. The latter decomposed via hydrogen atom emission to form the linear O(11)BCCH product through a tight exit transition state. The experimentally observed sideways scattering suggests that the hydrogen atom leaves perpendicularly to the rotational plane of the decomposing complex and almost parallel to the total angular momentum vector. RRKM calculations indicate that a minor micro channel could involve a hydrogen migration in the initial collision to form an O(11)BCCH(2) intermediate, which in turn can also emit atomic hydrogen. The overall reaction to form O(11)BCCH plus atomic hydrogen from the separated reactants was determined to be exoergic by 62 ± 8 kJ mol(-1). The reaction dynamics were also compared with the isoelectronic reaction of the cyano radical (CN; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) studied earlier.  相似文献   

11.
Spin-orbit coupling (SOC) induced intersystem crossing (ISC) has long been believed to play a crucial role in determining the product distributions in the O(3P) + C2H4 reaction. In this paper, we present the first nonadiabatic dynamics study of the title reaction at two center-of-mass collision energies: 0.56 eV, which is barely above the H-atom abstraction barrier on the triplet surface, and 3.0 eV, which is in the hyperthermal regime. The calculations were performed using a quasiclassical trajectory surface hopping (TSH) method with the potential energy surface generated on the fly at the unrestricted B3LYP/6-31G(d,p) level of theory. To simplify our calculations, nonadiabatic transitions were only considered when the singlet surface intersects the triplet surface. At the crossing points, Landau-Zener transition probabilities were computed assuming a fixed spin-orbit coupling parameter, which was taken to be 70 cm-1 in most calculations. Comparison with a recent crossed molecular beam experiment at 0.56 eV collision energy shows qualitative agreement as to the primary product branching ratios, with the CH3 + CHO and H + CH2CHO channels accounting for over 70% of total product formation. However, our direct dynamics TSH calculations overestimate ISC so that the total triplet/singlet ratio is 25:75, compared to the observed 43:57. Smaller values of SOC reduce ISC, resulting in better agreement with the experimental product relative yields; we demonstrate that these smaller SOC values are close to being consistent with estimates based on CASSCF calculations. As the collision energy increases, ISC becomes much less important and at 3.0 eV, the triplet to singlet branching ratio is 71:29. As a result, the triplet products CH2 + CH2O, H + CH2CHO and OH + C2H3 dominate over the singlet products CH3 + CHO, H2 + CH2CO, etc.  相似文献   

12.
We carried out the crossed molecular beam reaction of ground state methylidyne radicals, CH(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), at a nominal collision energy of 16.8 kJ mol(-1). Under single collision conditions, we identified both the atomic and molecular hydrogen loss pathways forming C(3)H(2) and C(3)H isomers, respectively. A detailed analysis of the experimental data suggested the formation of c-C(3)H(2) (31.5 ± 5.0%), HCCCH/H(2)CCC (59.5 ± 5.0%), and l-HCCC (9.0 ± 2.0%). The reaction proceeded indirectly via complex formation and involved the unimolecular decomposition of long-lived propargyl radicals to form l-HCCC plus molecular hydrogen and HCCCH/H(2)CCC plus atomic hydrogen. The formation of c-C(3)H(2) was suggested to be produced via unimolecular decomposition of the cyclopropenyl radical, which in turn could be accessed via addition of the methylidyne radical to both carbon atoms of the acetylene molecule or after an initial addition to only one acetylenic carbon atom via ring closure. This investigation brings us closer to unraveling of the reaction of important combustion radicals-methylidyne-and the connected unimolecular decomposition of chemically activated propargyl radicals. This also links to the formation of C(3)H and C(3)H(2) in combustion flames and in the interstellar medium.  相似文献   

13.
The chemical dynamics of the reaction of ground state carbon atoms, C(3Pj), with vinyl cyanide, C2H3CN(X 1A'), were examined under single collision conditions at collision energies of 29.9 and 43.9 kJ mol(-1) using the crossed molecular beams approach. The experimental studies were combined with electronic structure calculations on the triplet C4H3N potential energy surface (H. F. Su, R. I. Kaiser, A. H. H. Chang, J. Chem. Phys., 2005, 122, 074320). Our investigations suggest that the reaction follows indirect scattering dynamics via addition of the carbon atom to the carbon-carbon double bond of the vinyl cyanide molecule yielding a cyano cyclopropylidene collision complex. The latter undergoes ring opening to form cis/trans triplet cyano allene which fragments predominantly to the 1-cyano propargyl radical via tight exit transition states; the 3-cyano propargyl isomer was inferred to be formed at least a factor of two less; also, no molecular hydrogen elimination channel was observed experimentally. These results are in agreement with the computational studies predicting solely the existence of a carbon versus hydrogen atom exchange pathway and the dominance of the 1-cyano propargyl radical product. The discovery of the cyano propargyl radical in the reaction of atomic carbon with vinyl cyanide under single collision conditions implies that this molecule can be an important reaction intermediate in combustion flames and also in extraterrestrial environments (cold molecular clouds, circumstellar envelopes of carbon stars) which could lead to the formation of cyano benzene (C6H5CN) upon reaction with a propargyl radical.  相似文献   

14.
Ab initio modified Gaussian-2 G2M(RCC,MP2) calculations have been performed for various isomers and transition states on the singlet C4H4 potential energy surface. The computed relative energies and molecular parameters have then been used to calculate energy-dependent rate constants for different isomerization and dissociation processes in the C4H4 system employing Rice-Ramsperger-Kassel-Marcus theory and to predict branching ratios of possible products of the C2(1Sigmag+)+C2H4, C(1D)+H2CCCH2, and C(1D)+H3CCCH reactions under single-collision conditions. The results show that C2 adds to the double C=C bond of ethylene without a barrier to form carbenecyclopropane, which then isomerizes to butatriene by a formal C2 "insertion" into the C-C bond of the C2H4 fragment. Butatriene can rearrange to the other isomers of C4H4, including allenylcarbene, methylenecyclopropene, vinylacetylene, methylpropargylene, cyclobutadiene, tetrahedrane, methylcyclopropenylidene, and bicyclobutene. The major decomposition products of the chemically activated C4H4 molecule formed in the C2(1Sigmag+)+C2H4 reaction are calculated to be acetylene+vinylidene (48.6% at Ecol = 0) and 1-buten-3-yne-2-yl radical [i-C4H3(X2A'), H2C=C=C=CH*]+H (41.3%). As the collision energy increases from 0 to 10 kcal/mol, the relative yield of i-C4H3+H grows to 52.6% and that of C2H2+CCH2 decreases to 35.5%. For the C(1D)+allene reaction, the most important products are also i-C4H3+H (55.2%) and C2H2+CCH2 (30.1%), but for C(1D)+methylacetylene, which accesses a different region of the C4H4 singlet potential energy surface, the calculated product branching ratios differ significantly: 65%-69% for i-C4H3+H, 18%-14% for C2H2+CCH2, and approximately 8% for diacetylene+H2.  相似文献   

15.
The crossed molecular beam reactions of the phenyl and D5-phenyl radical with diacetylene (C(4)H(2)) was studied under single collision conditions at a collision energy of 46 kJ mol(-1). The chemical dynamics were found to be indirect and initiated by an addition of the phenyl/D5-phenyl radical with its radical center to the C1-carbon atom of the diacetylene reactant. This process involved an entrance barrier of 4 kJ mol(-1) and lead to a long lived, bound doublet radical intermediate. The latter emitted a hydrogen atom directly or after a few isomerization steps via tight exit transition states placed 20-21 kJ mol(-1) above the separated phenyldiacetylene (C(6)H(5)CCCCH) plus atomic hydrogen products. The overall reaction was determined to be exoergic by about 49 ± 26 kJ mol(-1) and 44 ± 10 kJ mol(-1) as determined experimentally and computationally, thus representing a feasible pathway to the formation of the phenyldiacetylene molecule in combustion flames of hydrocarbon fuel.  相似文献   

16.
The kinetics of reactions of C2(a(3)Pi(u)) and C2(X(1)Sigma(g)(+)) with various hydrocarbons (CH4, C2H2, C2H4, C2H6, and C3H8) have been studied in a uniform supersonic flow expansion over the temperature range 24-300 K. Rate coefficients have been obtained by using the pulsed laser photolysis-laser induced fluorescence technique, where both radicals were produced at the same time but detected separately. The reactivity of the triplet state was found to be significantly lower than that of the singlet ground state for all reactants over the whole temperature range of the study. Whereas C2(X(1)Sigma(g)(+)) reacts with a rate coefficient close to the gas kinetic limit with all hydrocarbons studied apart from CH4, C2(a(3)Pi(u)) appears to be more sensitive to the molecular and electronic structure of the reactant partners. The latter reacts at least one order of magnitude faster with unsaturated hydrocarbons than with alkanes, and the rate coefficients increase very significantly with the size of the alkane. Results are briefly discussed in terms of their potential astrophysical impact.  相似文献   

17.
Ab initio calculations employing the configuration interaction method including Davidson's corrections for quadruple excitations have been carried out to unravel the dissociation mechanism of acetylene dication in various electronic states and to elucidate ultrafast acetylene-vinylidene isomerization recently observed experimentally. Both in the ground triplet and the lowest singlet electronic states of C2H2(2+) the proton migration barrier is shown to remain high, in the range of 50 kcal/mol. On the other hand, the barrier in the excited 2 3A" and 1 3A' states decreases to about 15 and 34 kcal/mol, respectively, indicating that the ultrafast proton migration is possible in these states, especially, in 2 3A", even at relatively low available vibrational energies. Rice-Ramsperger-Kassel-Marcus calculations of individual reaction-rate constants and product branching ratios indicate that if C2H(2)2+ dissociates from the ground triplet state, the major reaction products should be CCH+(3Sigma-)+H+ followed by CH+(3Pi)+CH+(1Sigma+) and with a minor contribution (approximately 1%) of C2H+(2A1)+C+(2P). In the lowest singlet state, C2H+(2A1)+C+(2P) are the major dissociation products at low available energies when the other channels are closed, whereas at Eint>5 eV, the CCH+(1A')+H+ products have the largest branching ratio, up to 70% and higher, that of CH+(1Sigma+)+CH+(1Sigma+) is in the range of 25%-27%, and the yield of C2H++C+ is only 2%-3%. The calculated product branching ratios at Eint approximately 17 eV are in qualitative agreement with the available experimental data. The appearance thresholds calculated for the CCH++H+, CH++CH+, and C2H++C+ products are 34.25, 35.12, and 34.55 eV. The results of calculations in the presence of strong electric field show that the field can make the vinylidene isomer unstable and the proton elimination spontaneous, but is unlikely to significantly reduce the barrier for the acetylene-vinylidene isomerization and to render the acetylene configuration unstable or metastable with respect to proton migration.  相似文献   

18.
Crossed molecular beams experiments were utilized to explore the chemical reaction dynamics of ground-state cyano radicals, CN(X(2)Sigma(+)), with propylene (CH3CHCH2) together with two d3-isotopologues (CD3CHCH2, CH3CDCD2) as potential pathways to form organic nitriles under single collision conditions in the atmosphere of Saturn's moon Titan and in the interstellar medium. On the basis of the center-of-mass translational and angular distributions, the reaction dynamics were deduced to be indirect and commenced via an addition of the electrophilic cyano radical with its radical center to the alpha-carbon atom of the propylene molecule yielding a doublet radical intermediate: CH3CHCH2CN. Crossed beam experiments with propylene-1,1,2-d3 (CH3CDCD2) and propylene-3,3,3-d3 (CD3CHCH2) indicated that the reaction intermediates CH3CDCD2CN (from propylene-1,1,2-d3) and CD3CHCH2CN (from propylene-3,3,3-d3) eject both atomic hydrogen through tight exit transition states located about 40-50 kJ mol(-1) above the separated products: 3-butenenitrile [H2CCDCD2CN] (25%), and cis/trans-2-butenenitrile [CD3CHCHCN] (75%), respectively, plus atomic hydrogen. Applications of our results to the chemical processing of cold molecular clouds like TMC-1 and OMC-1 are also presented.  相似文献   

19.
The atom-radical reaction of ground state carbon atoms (C((3)P)) with the vinyl radical (C(2)H(3)(X(2)A')) was conducted under single collision conditions at a collision energy of 32.3 ± 2.9 kJ mol(-1). The reaction dynamics were found to involve a complex forming reaction mechanism, which is initiated by the barrier-less addition of atomic carbon to the carbon-carbon-double bond of the vinyl radical forming a cyclic C(3)H(3) radical intermediate. The latter has a lifetime of at least 1.5 times its rotational period and decomposes via a tight exit transition state located about 45 kJ mol(-1) above the separated products through atomic hydrogen loss to the cyclopropenylidene isomer (c-C(3)H(2)) as detected toward cold molecular clouds and in star forming regions.  相似文献   

20.
The reactions between phenyl radicals (C6H5) and propylene (CH3CHCH2) together with its D6- and two D3-isotopologues were studied under single collision conditions using the crossed molecular beams technique. The chemical dynamics inferred from the center-of-mass translational and angular distributions suggests that the reactions are indirect and initiated by an addition of the phenyl radical to the alpha-carbon atom (C1 carbon atom) of the propylene molecule at the =CH2 unit to form a radical intermediate (CH3CHCH2C6H5) on the doublet surface. Investigations with D6-propylene specified that only a deuterium atom was emitted; the phenyl group was found to stay intact. Studies with 1,1,2-D3- and 3,3,3-D3-propylene indicated that the initial collision complexes CH3CDCD2C6H5 (from 1,1,2-D3-propylene) and CD3CHCH2C6H5 (from 3,3,3-D3-propylene) eject both a hydrogen atom via rather loose exit transition states to form the D3-isotopomers of cis/trans-1-phenylpropene (CH3CHCHC6H5) (80-90%) and 3-phenylpropene (H2CCHCH2C6H5) (10-20%), respectively. Implications of these findings for the formation of polycyclic aromatic hydrocarbons (PAHs) and their precursors in combustion flames are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号