首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The reaction of the ground state atomic carbon, C(3P), with simple unsaturated nitrile, C2H3CN(X1A' (vinyl cyanide), is investigated theoretically to explore the probable routes for the formation of carbon-nitrogen-bearing species in extraterrestrial environments particularly of ultralow temperature. Five collision complexes without entrance barrier as a result of the carbon atom addition to the pi systems of C2H3CN are characterized. The B3YLP/6-311G(d,p) level of theory is utilized in obtaining the optimized geometries, harmonic frequencies, and energies of the intermediates, transition states, and products along the isomerization and dissociation pathways of each collision complex. Subsequently, with the facilitation of computed RRKM rate constants at collision energy of 0-10 kcal/mol, the most probable paths for each collision complexes are determined, of which the CCSD(T)/6-311G(d,p) energies are calculated. The major products predicted are exclusively due to the hydrogen atom dissociations, while the products of H2, CN, and CH2 decompositions are found negligible. Among many possible H-elimination products, cyano propargyl (p4) and 3-cyano propargyl (p5) are the most probable, in which p5 can be formed via two intermediates, cyano allene (i8) and cyano vinylmethylene (i6), while p4 is yielded from i8. The study suggests this class of reaction is an important route to the synthesis of unsaturated nitriles at the temperature as low as 10 K, and the results are valuable for future chemical models of interstellar clouds.  相似文献   

2.
The reaction dynamics of the boron monoxide radical ((11)BO; X(2)Σ(+)) with ethylene (C(2)H(4); X(1)A(g)) were investigated at a nominal collision energy of 12.2 kJ mol(-1) employing the crossed molecular beam technique and supported by ab initio and statistical (RRKM) calculations. The reaction is governed by indirect scattering dynamics with the boron monoxide radical attacking the carbon-carbon double bond of the ethylene molecule without entrance barrier with the boron atom. This addition leads to a doublet radical intermediate (O(11)BH(2)CCH(2)), which either undergoes unimolecular decomposition through hydrogen atom emission from the C1 atom via a tight transition state located about 13 kJ mol(-1) above the separated products or isomerizes via a hydrogen shift to the O(11)BHCCH(3) radical, which also can lose a hydrogen atom from the C1 atom. Both processes lead eventually to the formation of the vinyl boron monoxide molecule (C(2)H(3)BO; X(1)A'). The overall reaction was determined to be exoergic by about 40 kJ mol(-1). The reaction dynamics are also compared to the isoelectronic ethylene (C(2)H(4); X(1)A(g)) - cyano radical (CN; X(2)Σ(+)) system studied earlier.  相似文献   

3.
Crossed molecular beams experiments were utilized to explore the chemical reaction dynamics of ground-state cyano radicals, CN(X(2)Sigma(+)), with propylene (CH3CHCH2) together with two d3-isotopologues (CD3CHCH2, CH3CDCD2) as potential pathways to form organic nitriles under single collision conditions in the atmosphere of Saturn's moon Titan and in the interstellar medium. On the basis of the center-of-mass translational and angular distributions, the reaction dynamics were deduced to be indirect and commenced via an addition of the electrophilic cyano radical with its radical center to the alpha-carbon atom of the propylene molecule yielding a doublet radical intermediate: CH3CHCH2CN. Crossed beam experiments with propylene-1,1,2-d3 (CH3CDCD2) and propylene-3,3,3-d3 (CD3CHCH2) indicated that the reaction intermediates CH3CDCD2CN (from propylene-1,1,2-d3) and CD3CHCH2CN (from propylene-3,3,3-d3) eject both atomic hydrogen through tight exit transition states located about 40-50 kJ mol(-1) above the separated products: 3-butenenitrile [H2CCDCD2CN] (25%), and cis/trans-2-butenenitrile [CD3CHCHCN] (75%), respectively, plus atomic hydrogen. Applications of our results to the chemical processing of cold molecular clouds like TMC-1 and OMC-1 are also presented.  相似文献   

4.
The atom-radical reaction of ground state carbon atoms (C((3)P)) with the vinyl radical (C(2)H(3)(X(2)A')) was conducted under single collision conditions at a collision energy of 32.3 ± 2.9 kJ mol(-1). The reaction dynamics were found to involve a complex forming reaction mechanism, which is initiated by the barrier-less addition of atomic carbon to the carbon-carbon-double bond of the vinyl radical forming a cyclic C(3)H(3) radical intermediate. The latter has a lifetime of at least 1.5 times its rotational period and decomposes via a tight exit transition state located about 45 kJ mol(-1) above the separated products through atomic hydrogen loss to the cyclopropenylidene isomer (c-C(3)H(2)) as detected toward cold molecular clouds and in star forming regions.  相似文献   

5.
The hitherto elusive silaisocyanoacetylene molecule (HCCNSi)-a member of the silaisocyanide family-has been synthesized for the first time through the reaction of the silicon nitride radical (SiN) with acetylene (C(2)H(2)) in the gas phase under single collision conditions. Compared to the isoelectronic reaction of the cyano radical (CN) with acetylene, the replacement of the carbon atom in the cyano group by an isovalent silicon atom has a pronounced effect on the reactivity. Whereas the silicon nitride radical was found to pass an entrance barrier and adds with the nitrogen atom to the acetylene molecule, the cyano radical adds barrierlessly with the carbon atom forming the HCCH(NSi) and HCCH(CN) intermediates, respectively. These structures undergo hydrogen loss to form the linear silaisocyanoacetylene (HCCNSi) and cyanoacetylene molecules (HCCCN), respectively. Therefore, the isovalency of the silicon atom was found to bear little resemblance with the carbon atom having a dramatic effect not only on the reactivity, but also on the reaction mechanism, thermochemistry, and chemical bonding of the isoelectronic silaisocyanoacetylene and cyanoacetylene products, effectively reversing the thermodynamical stability of the nitrile versus isonitrile and silanitrile versus isosilanitrile isomer pairs.  相似文献   

6.
The reactions dynamics of the dicarbon molecule C2 in the 1Sigma (g)+ singlet ground state and 3Pi(u) first excited triplet state with allene, H2CCCH2(X1A1), was investigated under single collision conditions using the crossed molecular beam approach at four collision energies between 13.6 and 49.4 kJ mol(-1). The experiments were combined with ab initio electronic structure calculations of the relevant stationary points on the singlet and triplet potential energy surfaces. Our investigations imply that the reactions are barrier-less and indirect on both the singlet and the triplet surfaces and proceed through bound C5H4 intermediates via addition of the dicarbon molecule to the carbon-carbon double bond (singlet surface) and to the terminal as well as central carbon atoms of the allene molecule (triplet surface). The initial collision complexes isomerize to form triplet and singlet pentatetraene intermediates (H2CCCCCH2) that decompose via atomic hydrogen loss to yield the 2,4-pentadiynyl-1 radical, HCCCCCH2(X2B1). These channels result in symmetric center-of-mass angular distributions. On the triplet surface, a second channel involves the existence of a nonsymmetric reaction intermediate (HCCCH2CCH) that fragments through atomic hydrogen emission to the 1,4-pentadiynyl-3 radical [C5H3(X2B1)HCCCHCCH]; this pathway was found to account for the backward scattered center-of-mass angular distributions at higher collision energies. The identification of two resonance-stabilized free C5H3 radicals (i.e., 2,4-pentadiynyl-1 and 1,4-pentadiynyl-3) suggests that these molecules can be important transient species in combustion flames and in the chemical evolution of the interstellar medium.  相似文献   

7.
The reaction of dicarbon molecules in their electronic ground, C2(X1Sigma(g)+), and first excited state, C2(a3Pi(u)), with acetylene, C2H2(X1Sigma(g)+), to synthesize the 1,3-butadiynyl radical, C4H(X2Sigma+), plus a hydrogen atom was investigated at six different collision energies between 10.6 and 47.5 kJ mol(-1) under single collision conditions. These studies were contemplated by crossed molecular beam experiments of dicarbon with three acetylene isotopomers C2D2(X1Sigma(g)+), C2HD (X1Sigma+), and 13C2H2(X1Sigma(g)+) to elucidate the role of intersystem crossing (ISC) and of the symmetry of the reaction intermediate(s) on the center-of-mass functions. On the singlet surface, dicarbon was found to react with acetylene through an indirect reaction mechanism involving a diacetylene intermediate. The latter fragmented via a loose exit transition state via an emission of a hydrogen atom to form the 1,3-butadiynyl radical C4H(X2Sigma+). The D(infinity)(h) symmetry of the decomposing diacetylene intermediate results in collision-energy invariant, isotropic (flat) center-of-mass angular distributions of this microchannel. Isotopic substitution experiments suggested that at least at a collision energy of 29 kJ mol(-1), the diacetylene isotopomers are long-lived with respect to their rotational periods. On the triplet surface, the reaction involved three feasible addition complexes located in shallower potential energy wells as compared to singlet diacetylene. The involvement of the triplet surface accounted for the asymmetry of the center-of-mass angular distributions. The detection of the 1,3-butadiynyl radical, C4H(X2Sigma+), in the crossed beam reaction of dicarbon molecules with acetylene presents compelling evidence that the 1,3-butadiynyl radical can be formed via bimolecular reactions involving carbon clusters in extreme environments such as circumstellar envelopes of dying carbon stars and combustion flames.  相似文献   

8.
We carried out the crossed molecular beam reaction of ground state methylidyne radicals, CH(X(2)Π), with acetylene, C(2)H(2)(X(1)Σ(g)(+)), at a nominal collision energy of 16.8 kJ mol(-1). Under single collision conditions, we identified both the atomic and molecular hydrogen loss pathways forming C(3)H(2) and C(3)H isomers, respectively. A detailed analysis of the experimental data suggested the formation of c-C(3)H(2) (31.5 ± 5.0%), HCCCH/H(2)CCC (59.5 ± 5.0%), and l-HCCC (9.0 ± 2.0%). The reaction proceeded indirectly via complex formation and involved the unimolecular decomposition of long-lived propargyl radicals to form l-HCCC plus molecular hydrogen and HCCCH/H(2)CCC plus atomic hydrogen. The formation of c-C(3)H(2) was suggested to be produced via unimolecular decomposition of the cyclopropenyl radical, which in turn could be accessed via addition of the methylidyne radical to both carbon atoms of the acetylene molecule or after an initial addition to only one acetylenic carbon atom via ring closure. This investigation brings us closer to unraveling of the reaction of important combustion radicals-methylidyne-and the connected unimolecular decomposition of chemically activated propargyl radicals. This also links to the formation of C(3)H and C(3)H(2) in combustion flames and in the interstellar medium.  相似文献   

9.
The reaction between ground state carbon atoms, C(3P(j)), and phosphine, PH3(X(1)A1), was investigated at two collision energies of 21.1 and 42.5 kJ mol(-1) using the crossed molecular beam technique. The chemical dynamics extracted from the time-of-flight spectra and laboratory angular distributions combined with ab initio calculations propose that the reaction proceeds on the triplet surface via an addition of atomic carbon to the phosphorus atom. This leads to a triplet CPH3 complex. A successive hydrogen shift forms an HCPH2 intermediate. The latter was found to decompose through atomic hydrogen emission leading to the cis/trans-HCPH(X(2)A') reaction products. The identification of cis/trans-HCPH(X(2)A') molecules under single collision conditions presents a potential pathway to form the very first carbon-phosphorus bond in extraterrestrial environments like molecular clouds and circumstellar envelopes, and even in the postplume chemistry of the collision of comet Shoemaker-Levy 9 with Jupiter.  相似文献   

10.
The crossed molecular beams reaction of dicarbon molecules, C(2)(X(1)Σ(g)(+)/a(3)Π(u)) with vinylacetylene was studied under single collision conditions at a collision energy of 31.0 kJ mol(-1) and combined with electronic structure calculations on the singlet and triplet C(6)H(4) potential energy surfaces. The investigations indicate that both reactions on the triplet and singlet surfaces are dictated by a barrierless addition of the dicarbon unit to the vinylacetylene molecule and hence indirect scattering dynamics via long-lived C(6)H(4) complexes. On the singlet surface, ethynylbutatriene and vinyldiacetylene were found to decompose via atomic hydrogen loss involving loose exit transition states to form exclusively the resonantly stabilized 1-hexene-3,4-diynyl-2 radical (C(6)H(3); H(2)CCCCCCH; C(2v)). On the triplet surface, ethynylbutatriene emitted a hydrogen atom through a tight exit transition state located about 20 kJ mol(-1) above the separated stabilized 1-hexene-3,4-diynyl-2 radical plus atomic hydrogen product; to a minor amount (<5%) theory predicts that the aromatic 1,2,3-tridehydrobenzene molecule is formed. Compared to previous crossed beams and theoretical investigations on the formation of aromatic C(6)H(x) (x = 6, 5, 4) molecules benzene, phenyl, and o-benzyne, the decreasing energy difference from benzene via phenyl and o-benzyne between the aromatic and acyclic reaction products, i.e., 253, 218, and 58 kJ mol(-1), is narrowed down to only ~7 kJ mol(-1) for the C(6)H(3) system (aromatic 1,2,3-tridehydrobenzene versus the resonantly stabilized free radical 1-hexene-3,4-diynyl-2). Therefore, the C(6)H(3) system can be seen as a "transition" stage among the C(6)H(x) (x = 6-1) systems, in which the energy gap between the aromatic isomer (x = 6, 5, 4) is reduced compared to the acyclic isomer as the carbon-to-hydrogen ratio increases and the acyclic isomer becomes more stable (x = 1, 2).  相似文献   

11.
The reactions between phenyl radicals (C6H5) and propylene (CH3CHCH2) together with its D6- and two D3-isotopologues were studied under single collision conditions using the crossed molecular beams technique. The chemical dynamics inferred from the center-of-mass translational and angular distributions suggests that the reactions are indirect and initiated by an addition of the phenyl radical to the alpha-carbon atom (C1 carbon atom) of the propylene molecule at the =CH2 unit to form a radical intermediate (CH3CHCH2C6H5) on the doublet surface. Investigations with D6-propylene specified that only a deuterium atom was emitted; the phenyl group was found to stay intact. Studies with 1,1,2-D3- and 3,3,3-D3-propylene indicated that the initial collision complexes CH3CDCD2C6H5 (from 1,1,2-D3-propylene) and CD3CHCH2C6H5 (from 3,3,3-D3-propylene) eject both a hydrogen atom via rather loose exit transition states to form the D3-isotopomers of cis/trans-1-phenylpropene (CH3CHCHC6H5) (80-90%) and 3-phenylpropene (H2CCHCH2C6H5) (10-20%), respectively. Implications of these findings for the formation of polycyclic aromatic hydrocarbons (PAHs) and their precursors in combustion flames are discussed.  相似文献   

12.
The reaction dynamics of boron monoxide (BO; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) were investigated under single collision conditions at a collision energy of 13 kJ mol(-1) employing the crossed molecular beam technique; electronic structure RRKM calculations were conducted to complement the experimental data. The reaction was found to have no entrance barrier and proceeded via indirect scattering dynamics initiated by an addition of the boron monoxide radical with its boron atom to the carbon-carbon triple bond forming the O(11)BHCCH intermediate. The latter decomposed via hydrogen atom emission to form the linear O(11)BCCH product through a tight exit transition state. The experimentally observed sideways scattering suggests that the hydrogen atom leaves perpendicularly to the rotational plane of the decomposing complex and almost parallel to the total angular momentum vector. RRKM calculations indicate that a minor micro channel could involve a hydrogen migration in the initial collision to form an O(11)BCCH(2) intermediate, which in turn can also emit atomic hydrogen. The overall reaction to form O(11)BCCH plus atomic hydrogen from the separated reactants was determined to be exoergic by 62 ± 8 kJ mol(-1). The reaction dynamics were also compared with the isoelectronic reaction of the cyano radical (CN; X(2)Σ(+)) with acetylene (C(2)H(2); X(1)Σ(g)(+)) studied earlier.  相似文献   

13.
The crossed molecular beam reactions of the phenyl and D5-phenyl radical with diacetylene (C(4)H(2)) was studied under single collision conditions at a collision energy of 46 kJ mol(-1). The chemical dynamics were found to be indirect and initiated by an addition of the phenyl/D5-phenyl radical with its radical center to the C1-carbon atom of the diacetylene reactant. This process involved an entrance barrier of 4 kJ mol(-1) and lead to a long lived, bound doublet radical intermediate. The latter emitted a hydrogen atom directly or after a few isomerization steps via tight exit transition states placed 20-21 kJ mol(-1) above the separated phenyldiacetylene (C(6)H(5)CCCCH) plus atomic hydrogen products. The overall reaction was determined to be exoergic by about 49 ± 26 kJ mol(-1) and 44 ± 10 kJ mol(-1) as determined experimentally and computationally, thus representing a feasible pathway to the formation of the phenyldiacetylene molecule in combustion flames of hydrocarbon fuel.  相似文献   

14.
The reaction of electronically excited singlet methylene (1CH2) with acetylene (C2H2) was studied using the method of crossed molecular beams at a mean collision energy of 3.0 kcal/mol. The angular and velocity distributions of the propargyl radical (C3H3) products were measured using single photon ionization (9.6 eV) at the advanced light source. The measured distributions indicate that the mechanism involves formation of a long-lived C3H4 complex followed by simple C-H bond fission producing C3H3+H. This work, which is the first crossed beams study of a reaction involving an electronically excited polyatomic molecule, demonstrates the feasibility of crossed molecular beam studies of reactions involving 1CH2.  相似文献   

15.
Crossed molecular beam experiments were utilized to untangle the reaction dynamics to form 1-phenylmethylacetylene [CH(3)CCC(6)H(5)] and 1-phenylallene [C(6)H(5)HCCCH(2)] in the reactions of phenyl radicals with methylacetylene and allene, respectively, over a range of collision energies from 91.4 to 161.1 kJ mol(-1). Both reactions proceed via indirect scattering dynamics and are initiated by an addition of the phenyl radical to the terminal carbon atom of the methylacetylene and allene reactants to form short-lived doublet C(9)H(9) collision complexes CH(3)CCHC(6)H(5) and C(6)H(5)H(2)CCCH(2). Studies with isotopically labeled reactants and the information on the energetics of the reactions depict that the energy randomization in the decomposing intermediates is incomplete. The collision complexes undergo atomic hydrogen losses via tight exit transition states leading to 1-phenylmethylacetylene [CH(3)CCC(6)H(5)] and 1-phenylallene [C(6)H(5)HCCCH(2)]. The possible role of both C(9)H(8) isomers as precursors to PAHs in combustion flames and in the chemistry of circumstellar envelopes of dying carbon stars is discussed.  相似文献   

16.
The reaction dynamics of phenyl radicals (C6H5) with ethylene (C2H4) and D4-ethylene (C2D4) were investigated at two collision energies of 83.6 and 105.3 kJ mol-1 utilizing a crossed molecular beam setup. The experiments suggested that the reaction followed indirect scattering dynamics via complex formation and was initiated by an addition of the phenyl radical to the carbon-carbon double bond of the ethylene molecule forming a C6H5CH2CH2 radical intermediate. Under single collision conditions, this short-lived transient species was found to undergo unimolecular decomposition via atomic hydrogen loss through a tight exit transitions state to synthesize the styrene molecule (C6H5C2H3). Experiments with D4-ethylene verified that in the corresponding reaction with ethylene the hydrogen atom was truly emitted from the ethylene unit but not from the phenyl moiety. The overall reaction to form styrene plus atomic hydrogen from the reactants was found to be exoergic by 25 +/- 12 kJ mol(-1). This study provides solid evidence that in combustion flames the styrene molecule, a crucial precursor to form polycyclic aromatic hydrocarbons (PAHs), can be formed within a single neutral-neutral collision, a long-standing theoretical prediction which has remained to be confirmed by laboratory experiments under well-defined single collision conditions for the last 50 years.  相似文献   

17.
The chemical dynamics of the reaction of allyl radicals, C(3)H(5)(X(2)A(2)), with two C(3)H(4) isomers, methylacetylene (CH(3)CCH(X(1)A(1))) and allene (H(2)CCCH(2)(X(1)A(1))) together with their (partially) deuterated counterparts, were unraveled under single-collision conditions at collision energies of about 125 kJ mol(-1) utilizing a crossed molecular beam setup. The experiments indicate that the reactions are indirect via complex formation and proceed via an addition of the allyl radical with its terminal carbon atom to the terminal carbon atom of the allene and of methylacetylene (alpha-carbon atom) to form the intermediates H(2)CCHCH(2)CH(2)CCH(2) and H(2)CCHCH(2)CHCCH(3), respectively. The lifetimes of these intermediates are similar to their rotational periods but too short for a complete energy randomization to occur. Experiments with D4-allene and D4-methylacetylene verify explicitly that the allyl group stays intact: no hydrogen emission was observed but only the release of deuterium atoms from the perdeuterated reactants. Further isotopic substitution experiments with D3-methylacetylene combined with the nonstatistical nature of the reaction suggest that the intermediates decompose via hydrogen atom elimination to 1,3,5-hexatriene, H(2)CCHCH(2)CHCCH(2), and 1-hexen-4-yne, H(2)CCHCH(2)CCCH(3), respectively, via tight exit transition states located about 10-15 kJ mol(-1) above the separated products. The overall reactions were found to be endoergic by 98 +/- 4 kJ mol(-1) and have characteristic threshold energies to reaction between 105 and 110 kJ mol(-1). Implications of these findings to combustion and interstellar chemistry are discussed.  相似文献   

18.
A detailed investigation of the dynamics of the reactions of ground- and excited-state carbon atoms, C(3P) and C(1D), with acetylene is reported over a wide collision energy range (3.6-49.1 kJ mol-1) using the crossed molecular beam (CMB) scattering technique with electron ionization mass spectrometric detection and time-of-flight (TOF) analysis. We have exploited the capability of (a) generating continuous intense supersonic beams of C(3P, 1D), (b) crossing the two reactant beams at different intersection angles (45, 90, and 135 degrees ) to attain a wide range of collision energies, and (c) tuning the energy of the ionizing electrons to low values (soft ionization) to suppress interferences from dissociative ionization processes. From angular and TOF distribution measurements of products at m/z=37 and 36, the primary reaction products of the C(3P) and C(1D) reactions with C2H2 have been identified to be cyclic (c)-C3H + H, linear (l)-C3H + H, and C3 + H2. From the data analysis, product angular and translational energy distributions in the center-of-mass (CM) system for both the linear and cyclic C3H isomers as well as the C3 product from C(3P) and for l/c-C3H and C3 from C(1D) have been derived as a function of collision energy from 3.6 to 49.1 kJ mol-1. The cyclic/linear C3H ratio and the C3/(C3 + c/l-C3H) branching ratios for the C(3P) reaction have been determined as a function of collision energy. The present findings have been compared with those from previous CMB studies using pulsed beams; here, a marked contrast is noted in the CM angular distributions for both C3H- and C3-forming channels from C(3P) and their trend with collision energy. Consequently, the interpretation of the reaction dynamics derived in the present work contradicts that previously proposed from the pulsed CMB studies. The results have been discussed in the light of the available theoretical information on the relevant triplet and singlet C3H2 ab initio potential energy surfaces (PESs). In particular, the branching ratios for the C(3P) + C2H2 reaction have been compared with the available theoretical predictions (approximate quantum scattering calculations and quasiclassical trajectory calculations on ab initio triplet PESs and, very recent, statistical calculations on ab initio triplet PESs as well as on ab initio triplet/singlet PESs including nonadiabatic effects, that is, intersystem crossing). While the experimental branching ratios have been corroborated by the statistical predictions, strong disagreement has been found with the results of the dynamical calculations. The astrophysical implications of the present results have been noted.  相似文献   

19.
Thallium(III) oxide can be dissolved in water in the presence of strongly complexing cyanide ions. Tl(III) is leached from its oxide both by aqueous solutions of hydrogen cyanide and by alkali-metal cyanides. The dominating cyano complex of thallium(III) obtained by dissolution of Tl2O3 in HCN is [Tl(CN)3(aq)] as shown by 205Tl NMR. The Tl(CN)3 species has been selectively extracted into diethyl ether from aqueous solution with the ratio CN-/Tl(III) = 3. When aqueous solutions of the MCN (M = Na+, K+) salts are used to dissolve thallium(III) oxide, the equilibrium in liquid phase is fully shifted to the [Tl(CN)4]- complex. The Tl(CN)3 and Tl(CN)4- species have for the first time been synthesized in the solid state as Tl(CN)3.H2O (1), M[Tl(CN)4] (M = Tl (2) and K (3)), and Na[Tl(CN)4].3H2O (4) salts, and their structures have been determined by single-crystal X-ray diffraction. In the crystal structure of 1, the thallium(III) ion has a trigonal bipyramidal coordination with three cyanide ions in the equatorial plane, while an oxygen atom of the water molecule and a nitrogen atom from a cyanide ligand, attached to a neighboring thallium complex, form a linear O-Tl-N fragment. In the three compounds of the tetracyano-thallium(III) complex, 2-4, the [Tl(CN)4]- unit has a distorted tetrahedral geometry. Along with the acidic leaching (enhanced by Tl(III)-CN- complex formation), an effective reductive dissolution of the thallium(III) oxide can also take place in the Tl2O3-HCN-H2O system yielding thallium(I), while hydrogen cyanide is oxidized to cyanogen. The latter is hydrolyzed in aqueous solution giving rise to a number of products including (CONH2)2, NCO-, and NH4+ detected by 14N NMR. The crystalline compounds, Tl(I)[Tl(III)(CN)4], Tl(I)2C2O4, and (CONH2)2, have been obtained as products of the redox reactions in the system.  相似文献   

20.
The elementary reaction of ground state boron atoms, (B((2)P(j))), with ammonia (NH(3)(X(1)A(1))) was conducted under single collision conditions at a collision energy of 20.5 ± 0.4 kJ mol(-1) in a crossed molecular beams machine. Combined with electronic structure calculations, our experimental results suggested that the reaction was initiated by a barrier-less addition of the boron atom to the nonbonding electron pair of the nitrogen atom forming a weakly bound BNH(3) collision complex. This intermediate underwent a hydrogen shift to a doublet HBNH(2) radical that decomposed via atomic hydrogen loss to at least the imidoborane (HBNH(X(1)Σ(+)) molecule, an isoelectronic species of acetylene (HCCH(X(1)Σ(g)(+))). Our studies are also discussed in light of the isoelectronic C(2)H(3) potential energy surface accessed via the isoelectronic carbon-methyl system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号