首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured the propagation velocities of bulk acoustic waves in the simple cubic transition-metal oxide ReO3 by ultrasonic pulse propagation. The elastic stiffness constants at 300 K are: C11 = (47.9 ± 1.4) × 1011 dyne/cm2; C44 = (6.1 ± 0.2) × 1011 dyne/cm2; C12 = (?0.7 ± 2.8) × 1011 dyne/cm2. These elastic constants indicate a crystal with highly anisotropic shear propagation. The Debye temperature of the compound from these measurements is 528 K. This value is somewhat higher than previous results from specific heat and resistivity determinations.  相似文献   

2.
Long-wavelength acoustic phonons have been studied for each of the [ζ00]T, [ζ00]L, [ζζ0]L and [ζζ0]T1 branches in solid Kr at T = 77 K by means of inelastic neutron scattering utilizing ‘cold neutrons’ as they are available in the long-wave length tail of the pile spectrum. The raw data have been corrected for resolution effects taking into account the curvature of the dispersion surface and variation of mode eigenvectors. It has turned out, that this yields appreciable shifts of the raw data. The results of our experiment give c11 = 4·25 ± 0·10, c44 = 2·04 ± 0·03, c12 = 2·82 ± 0·12 and a value for B = (c11 + 2c12)/3 = 3·30 ± 0·09 × 1010 dyne/cm2. Available thermodynamic data for Kr gives a derived value for Bad = 2·58 ± 0·06 × 1010 dyne/cm2 indicating a large difference between zero sound and first sound in solid Kr at high temperatures.  相似文献   

3.
The phosphorescence spectrum of the metastable 4 Eu state of copper porphin in single crystals of n-octane (C8) and n-decane (C10) has been studied between 2·3 and 35 K, with and without a magnetic field B. The crystal field splitting between the orbital components observed at 35 K is δ = 30·3 ± 0·3 (C8), 13·8 ± 0·2 cm-1 (C10). From the Zeeman shifts we derive the effective orbital angular momentum Λ′ = 0·8 ± 0·2 (C10), the spin-orbit coupling parameter |Z′| = 1·5 ± 1·0 cm-1 (C10), the spin-spin dipolar interaction parameters D = -0·1 ± 0·2 cm-1 (C8, C10) and |E| = 0·31 ± 0·03 cm-1 (C8, C10), and the g-factors g = 2·14 ± 0·04 (C8, C10) and g = 2·00 ± 0·03 (C8, C10).  相似文献   

4.
5.
Measurements have been made of the transit times of pulses of longitudinal and transverse ultrasonic waves propagating in single crystal LaB6 at room temperature. A unique set of values for the three independent elastic constants has been calculated from the resultant velocities and is; C11 = (45.33 ± 0.11) × 1011dynecm-2, C12 = (1.82 ± 0.17) × 1011dynecm2 and C44 = (9.01 ± 0.05) × 1011dyne/cm2. The Debye temperature of LaB6 from these measurements is 773 K, which agrees relatively well with the X-ray Debye temperature, however, differs much from the calorimetric and electrical resistance Debye temperatures.  相似文献   

6.
本文用黄昆的方法计算了电子极化对氟化钙离子晶体的弹性系数c12-c44的偏离的贡献,以及对静电与光学介电常数差的影响,其结果在数量级和方向上与实验结果符合。  相似文献   

7.
From measurements of the magnetic properties of some dilute AuFe alloys we find that V0, the strength of the Ruderman-Kittel-Kasuya-Yosida interaction, V(r) = (V0 cos 2kFr)/r3, decreases rapidly from V0 = 11.9 × 10-36 erg cm3 at n = 42 ppm Fe to 1.03 × 10-36 erg cm3 at 6050 ppm Fe. We suggest that the observed decrease of V0 is due to self-damping of the RKKY oscillations, and discuss the significance of this decrease for the interpretation of other experiments on AuFe.  相似文献   

8.
By comparing diffusion coefficientsD of bivalent cations Ba2+, Ca2+, Sr2+ in NaCl crystals it was shown that in the temperature range above 550 °CD (Ba2+)>D (Sr2+)>D (Ca2+) is valid. Temperature dependences of jump frequenciesw 2 of these cations are described byw 2 (Ba2+)=(2·15±0·55) × 1012 × exp {?(0·817±0.007)/kT};w 2 (Sr2+)=(2·9±1·1) × 1012 × exp {?(0·84±0.02)/kT} andw 2 (Ca2+)=(5·5±6·5) × 1010 × exp {?(0·51±0·07)/kT}. It was demonstrated that in NaCl crystals the activation enthalpy and the preexponential factor of the jump frequencyw 2 increase with increasing ionic radius and mass of the bivalent alkaline earth cation.  相似文献   

9.
The effect of point defects on the magnetic properties of La0.67Ca0.33MnO3 polycrystals and single crystals has been studied. The magnetic susceptibility χ dc of the initial samples and samples irradiated by electrons to the maximum dose F = 9 × 1018 cm?2 has been measured in the temperature region 80 K < T < 650 K. Local variations of Mn-O-Mn bond angles and lengths result in a nonmonotonic dose dependence of the Curie temperature T C. At high doses of electron irradiation, F ≥ 5 × 1018 cm?2, the temperature of the transition from the ferromagnetic to polaron state in a single crystal is found to increase. In the paramagnetic region close to T C, ferromagnetically ordered polarons are observed to exist, while at T > 1.2T C, localization of e g electrons initiates formation of paramagnetic polarons with a higher magnetic moment. Electron irradiation stimulates persistence of magnetic polarons up to higher temperatures T > 2T C.  相似文献   

10.
The X-band EPR spectrum of Mn2+ in Sn2P2S6 was studied in the temperature rangeT=223–363 K. At room temperature the spin-Hamiltonian constants areg=2.00±0.01,B 2 0 =(163±3)·10?4 cm?1,B 2 2 =(159±3)·10?4 cm?1,A=?(75±1)·10?4 cm?1. The effect of the invariance in temperature of the resonance magnetic fields in the narrow temperature rangeT=337–340 K and the model of the paramagnetic centre are discussed. According to EPR data a phase transition occurs atT=337 K. This transition from the paraelectric phase to the ferroelectric one is accompanied by a dramatic change in value of the spin-Hamiltonian constantB 2 0 .  相似文献   

11.
The crystal field levels of the Er (J = 152) ion in a single crystal of ErSb have been measured by inelastic neutron scattering. The crystal field parameters obtained by a least squares fit to the spectra at several temperatures are: B4 = (0·473 ± 0·005) × 10?2°K and B6 = (0·59 ± 0·06) × 10?5°K, which differ considerably from the values o by interpolation from measurements on other compounds. In addition the temperature dependence of the magnetic scattering in the vicinity of the Néel temperature (TN = 3·55°K) clearly demonstrates that the transition is second order in contrast to the first order behavior suggested by specific heat measurements. Also, any lattice distortion accompanying the magnetic ordering is less than 0.1 per cent, the resolution of the present experiment.  相似文献   

12.
In order to determine the electric quadrupole moment of Sr87 (I= 9/2) the hyperfine structure-splitting of the 5s5p 3 P 1-state of the SrI-spectra was investigated by optical double resonance. By detection of high frequency transitions (ΔF=±1,Δm F=0,±1) in an external magnetic fieldH 0≈0 one obtains the hyperfine structure separations asv F=11/2?F=9/2=1463·149 (6) Mc/sec andv F=9/2?F=7/2=1130·264 (6) Mc/sec. From these frequencies one calculates the magnetic hyperfine structure-splitting constantA=?260·084 (2) Mc/sec and the electric quadrupole interaction constantB=?35·658 (6) Mc/sec. B leads to an electric quadrupole moment ofQ(Sr87)=+0·36 (3)·10?24 cm2.  相似文献   

13.
We report the observation of magneto-acoustic absorption by the electron-hole liquid in a potential well in stressed germanium. This experiment confirms the metallic character of the liquid and yields direct values for the electron Fermi level ?F = (2.6±0.1) meV and inter-carrier collision time τ = (6.0±0.5) × 10-11sec at 1.8 K under a stress of approximately 5 kg/mm2. From ?F we deduce an electron density of n = (6.2) ± 0.4) × 1016cm-3 at 1.8 K.  相似文献   

14.
Using Mößbauer effect measurements in the temperature range between 3 °K and 310 °K the magnetic fields at the nucleus in iron-stilbene, FeCl2·H2O and FeCl3 are determined to beH T=0=(250±10) kOe, (252±18) kOe and (468±10) kOe; a Néel-temperature ofT N=(23±1) °K is measured for iron-stilbene. The electric quadrupole splittings atT=0 °K for iron-stilbene and FeCl2 ·H 2 O, ΔE=(+2.52±0.02) mm/sec and (+2.50±0.05) mm/sec, yield electric field gradients at the iron nucleus ofq z=+9.7·1017 V/cm2 and +9.6·1017 V/cm2, whereq z⊥H; Debyetemperatures of θ=162 °K and 188 °K are obtained. The energy of the excited 3d-electron levels in iron-stilbene is estimated to Δ1=309 cm?1 and Δ2=618cm?1 as deduced from the temperature dependence ofΔE. In contrast to the suggestion ofEuler andWillstaedt bivalence of the iron in ironstilbene is found; its composition is shown to be 4(FeCl2 ·H 2O)·stilbene.  相似文献   

15.
The dielectric, optical and non-linear optical properties of Ba6Ti2Nb8O30 single crystals were examined from room temperature up to the Curie temperature of 245°C. The spontaneous polarization at room temperature was estimated as 0·22±0·01 C/m2. The linear electrooptic constants were measured as r33T=(1·17±0·02)×10?10 and r13T=(0·42±0·01)×10?10 m/V. The non-linear optical coefficients were d33=(15·1±2·0)×10?12 and d31=(11·0±2·0)×10?12 m/V, which are comparable to those of Ba4Na2Nb10O30. Temperature dependences of δ33 and δ31 (Miller's δ) were found to be proportional to that of Ps.  相似文献   

16.
Ultrasonic wave velocities have been measured in SnTe single crystals with hole concentrations of 1.0 and 4.5 × 1020/cm3. The shear elastic stiffness constant C44 is sensitive to the hole concentration but 12 (C11 ? C12) is not, a result which is consistent with the valence band pockets being sited at the L points. The non-ellipsoidal, non-parabolic multivalley band model has been used to calculate the hole contribution to the elastic constants. The calculated difference between the shear constant C44 (2.78 × 1010 dyne cm-2) for the two crystals is in agreement with that measured experimentally (2.67 × 1010 dyne cm-2). The shear deformation potential constant Eu for the SnTe valence band is 7.8 eV at 293°K.  相似文献   

17.
Spectra of the 2ν2 band of formaldehyde have been obtained with high resolution (0.035 cm?1). Measurements were made with path lengths of 8, 16, and 24 m and at sample pressures from 0.1 to 0.3 mm Hg at room temperature (~296°K). From these data, the following constants were determined for the 2ν2 band in wavenumber units: v0=3471.718±0.004,A=9.3958±030013,B=1.28100±0.00024,C=1.11662±0.00024, Tbbb=-12.8±0.5×10-6,Taabb=60±5×10-6. The line strengths were also obtained from the data. The strengths were analyzed to determine the band strength and the rotational factors. At 296°K, the strength of the 2ν2 band was found to be 15.5 ± 0.9 cm?1/(cm·atm).  相似文献   

18.
Heat capacities of [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] were measured between 135 and 375 K. A heat capacity anomaly due to the spin-transition from low-spin 1A1 to high-spin π2 electronic ground state was found at 176·29 K for the SCN-compound and at 231·26 K for the SeCN-compound, respectively. Enthalpy and entropy of transition were determined to be ΔH = 8·60 ± 0·14 kJ mol?1 and ΔS = 48·78 ± 0·71 J K?1 mol?1 for the SCN-compound and ΔH = 11·60 ± 0·44 kJ mol?1 and ΔS = 51·22 ± 2·33 J K?1 mol?1 for the SeCN-compound. To account for much larger value of ΔS compared with the magnetic contribution, we suggest that there is significant coupling between electronic state and phonon system. We also present a phenomenological theory based on heterophase fluctuation. Gross aspects of magnetic, spectroscopic, and thermal behaviors were satisfactorily accounted for by this model. To examine closely the transition process, infrared spectra were recorded as a function of temperature in the range 4000 ? 30 cm?1. The spectra revealed clearly the coexistence of the 1A1, and the 5T2 ground states around Tc.  相似文献   

19.
The third-order elastic constants of single crystal GaSb are determined using ultrasonic pulse interferometer at 10 MHz. The constants at 300°K, in units of 1011 N.m.−2, are Cl11 = ™ 4 ·75 ± 0·06 C144 = + 0·50 ± 0·25 C113 = ™ 3 ·08 ± 0·02 C166 = ™ 2·16 ± 0·13 C123 = ™ 0 ·44 ± 0·29 C456 = ™ 0·25 ± 0·15 These constants are used to evaluate the three anharmonic first and second neighbour force constants based on modified Keating’s model. The constants are (in units of 1011 N.m−2)γ=− 2·406;δ=0·407;ε=−0·222.  相似文献   

20.
Phonon dispersion curves in DC1 at 109 K have been determined. Values of the zero-sound elastic constants C11 = (6.29±0.23), C12 = (3.95±0.22) and C44 = (2.47±0.12) × 1010 dyn cm? re obtained from fitting the data to a harmonic Born-von-Kármán model. This implies a deviation from the Cauchy relation δ = ?0.38±0.08.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号