首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
β−cyclodextrins (β−CD)-based inclusion complexes of CoFe2O4 magnetic nanoparticles (MNPs) were prepared and used as catalysts for chemiluminescence (CL) system using the luminol-hydrogen peroxide CL reaction as a model. The as-prepared inclusion complexes were characterized by XRD (X-ray diffraction), TGA (thermal gravimetric analysis) and FT-IR. The oxidation reaction between luminol and hydrogen peroxide in basic media initiated CL. The effect of β−CD-based inclusion complexes of CoFe2O4 magnetic nanoparticles and naked CoFe2O4 magnetic nanoparticles on the luminol-hydrogen peroxide CL system was investigated. It was found that inclusion complexes between β−CD and CoFe2O4 magnetic nanoparticles could greatly enhance the CL of the luminol-hydrogen peroxide system. Investigation on the kinetic curves and the chemiluminescence spectra of the luminol-hydrogen peroxide system demonstrates that addition of CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 MNPs does not produce a new luminophor of the chemiluminescent reaction. The luminophor for the CL system was still the excited-state 3-aminophthalate anions (3-APA*). The enhanced CL signals were thus ascribed to the possible catalysis from CoFe2O4 MNPs or inclusion complexes between β−CD and CoFe2O4 nanoparticles. The feasibility of employing the proposed system for hydrogen peroxide sensing was also investigated. Experimental results showed that the CL emission intensity was linear with hydrogen peroxide concentration in the range of 1.0 × 10−7 to 4.0 × 10−6 mol L−1 with a detection limit of 2.0 × 10−8 mol L−1 under optimized conditions. The proposed method has been used to determine hydrogen peroxide in water samples successfully.  相似文献   

2.
Porous α-Fe2O3 hollow microspheres were synthesized through a simple and efficient carbon sphere template method. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption. Structural characterization indicated that as-prepared α-Fe2O3 hollow microspheres had porous structure with around 200 nm in diameter and thin shell about 10 nm thick. The average pore size and Brunauer-Emmett-Teller specific surface area of α-Fe2O3 hollow microspheres were 6.5 nm and 111.6 m2/g, respectively. The gas sensing behavior investigation showed that as-synthesized α-Fe2O3 hollow microspheres exhibited very good gas sensing property to acetone vapor.  相似文献   

3.
Some nanostructures are reported to possess enzyme-mimetic activities similar to those of natural enzymes. Herein, highly-dispersed Pt nanodots on Au nanorods (HD- PtNDs@AuNRs) with mimetic peroxidase activity were designed as an active electrode modifier for fabrication of a hydrogen peroxide (H2O2) electrochemical sensor. The HD-PtNDs@AuNRs were synthesized by a seed-mediated growth approach and confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. The electrochemical and catalytical performances of HD-PtNDs@AuNRs towards H2O2 reduction were investigated in detail by cyclic voltammetry and amperometry. The HD-PtNDs@AuNRs modified electrode displayed a high catalytic activity to H2O2 at −0.10 V (versus SCE), a rapid response within 5 s, a wide linear range of 2.0–3800.0 μM, a detection limit of 1.2 μM (S/N = 3), and a high sensitivity of 181 μA mM−1 cm−2. These results suggested a promising potential of fabricating H2O2 electrochemical sensor using HD- PtNDs@AuNRs.  相似文献   

4.
In this paper, LaNi0.6Co0.4O3 (LNC) nanoparticles were synthesized by the sol–gel method, and the structure and morphology of LNC nanoparticles were characterized by X-ray diffraction spectrum, scanning electron microscopy and transmitting electron microscopy. And then, LNC was used to modify carbon paste electrode (CPE) without any adhesive to fabricate hydrogen peroxide and glucose sensor, and the results demonstrated that LNC exhibited strong electrocatalytical activity by cyclic voltammetry and amperometry. In H2O2 determination, linear response was obtained in the concentration range of 10 nM–100 μM with a detection limit of 1.0 nM. In glucose determination, there was the linear region of 0.05–200 μM with a detection limit of 8.0 nM. Compared with other reports, the proposed sensor also displayed high sensitivity toward H2O2 (1812.84 μA mM−1 cm−2) and glucose (643.0 μA mM−1 cm−2). Moreover, this prepared sensor was applied to detect glucose in blood serum and hydrogen peroxide in toothpaste samples with satisfied results, indicating its possibility in practical application.  相似文献   

5.
Co3O4 hollow microspheres with micro- and nano-scale composite structure self-assembled by nanosheets were successfully fabricated by the template-free wet-chemical approach. This method is simple, facile and effective. The Co3O4 hollow microspheres with good purity and homogeneous size were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectrometer (ICP). The formation mechanism was deeply studied. The micro- and nano-scale composite structure constructed by the porous nanosheets promotes to improve the electrochemical properties of Co3O4 hollow microspheres. The high discharge capacity of 1048 mAh g−1 indicates it to be the potential application in electrode materials of Li-ion battery.  相似文献   

6.
In this work, we reported a sandwiched luminol electrochemiluminescence (ECL) immunosensor using ZnO nanoparticles (ZnONPs) and glucose oxidase (GOD) decorated graphene as labels and in situ generated hydrogen peroxide as coreactant. In order to construct the base of the immunosensor, a hybrid architecture of Au nanoparticles and graphene by reduction of HAuCl4 and graphene oxide (GO) with ascorbic acid was prepared. The resulted hybrid architecture modified electrode provided an excellent platform for immobilization of antibody with good bioactivity and stability. Then, ZnONPs and GOD functionalized graphene labeled secondary antibody was designed for fabricating a novel sandwiched ECL immunosensor. Enhanced sensitivity was obtained by in situ generating hydrogen peroxide with glucose oxidase and the catalysis of ZnONPs to the ECL reaction of luminol–H2O2 system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of carcinoembryonic antigen (CEA) in the range from 10 pg mL−1 to 80 ng mL−1 and with a detection limit of 3.3 pg mL−1 (S N−1 = 3). The amplification strategy performed good promise for clinical application of screening of cancer biomarkers.  相似文献   

7.
Feng Li 《Talanta》2009,77(4):1304-1308
A simple and reliable one-pot approach was established for the development of a novel hydrogen peroxide (H2O2) biosensor based on in situ covalent immobilization of horseradish peroxidase (HRP) into biocompatible material through polysaccharide-incorporated sol-gel process. Siloxane with epoxide ring and trimethoxy anchor groups was applied as the bifunctional cross-linker and the inorganic resource for organic-inorganic hybridization. The reactivity between amine groups and epoxy groups allowed the covalent incorporation of HRP and the functional biopolymer, chitosan (CS) into the inorganic polysiloxane network. Some experimental variables, such as mass ratio of siloxane to CS, pH of measuring solution and applied potential for detection were optimized. HRP covalently immobilized in the hybrid matrix possessed high electrocatalytic activity to H2O2 and provided a fast amperometric response. The linear response of the as-prepared biosensor for the determination of H2O2 ranged from 2.0 × 10−7 to 4.6 × 10−5 mol l−1 with a detection limit of 8.1 × 10−8 mol l−1. The apparent Michaelis-Menten constant was determined to be 45.18 μmol l−1. Performance of the biosensor was also evaluated with respect to possible interferences. The fabricated biosensor exhibited high reproducibility and storage stability. The ease of the one-pot covalent immobilization and the biocompatible hybrid matrix serve as a versatile platform for enzyme immobilization and biosensor fabricating.  相似文献   

8.
Hydrogen peroxide is an important analyte in biochemical, industrial and environmental systems. Therefore, development of novel rapid and sensitive analytical methods is useful. In this work, a hemin-graphene nano-sheets (H-GNs)/gold nano-particles (AuNPs) electrochemical biosensor for the detection of hydrogen peroxide (H2O2) was researched and developed; it was constructed by consecutive, selective modification of the GCE electrode. Performance of the H-GNs/AuNPs/GCE was investigated by chronoamperometry, and AFM measurements suggested that the graphene flakes thickness was ∼1.3 nm and that of H-GNs was ∼1.8 nm, which ultimately indicated that each hemin layer was ∼0.25 nm. This biosensor exhibited significantly better electrocatalytic activity for the reduction of hydrogen peroxide in comparison with the simpler AuNPs/GCE and H-GNs/GCE; it also displayed a linear response for the reduction of H2O2 in the range of 0.3 μM to 1.8 mM with a detection limit of 0.11 μM (S N−1 = 3), high sensitivity of 2774.8 μA mM−1 cm−2, and a rapid response, which reached 95% of the steady state condition within 5 s. In addition, the biosensor was unaffected by many interfering substances, and was stable over time. Thus, it was demonstrated that this biosensor was potentially suitable for H2O2 analysis in many types of sample.  相似文献   

9.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

10.
Gendi Jin 《Talanta》2009,80(2):858-1080
A new petentiometric method to determine peroxide hydrogen and glucose had been studied. This method had been applied on the petentiometric determination of peroxide hydrogen and glucose in the total ionic strength adjustment buffer (TISAB) (pH 7.5) solution with the glassy electrode modified by the calix[4]arene. The glassy carbon electrode covered with the calix[4]arene depended on the H2O2 concentration in the range of log[H2O2] from −3.3 to −1.2 in the solution of TISAB (pH 7.5) with nearly Nernstian slope of about 65.6 ± 3 mV and the detection limit of peroxide hydrogen was 4.0 × 10−5 mol L−1. The glassy carbon electrode covered with the calix[4]arene depended on the glucose concentration in the range of log[glucose] from −3.6 to −2.8 in the solution of TISAB (pH 7.5) with nearly Nernstian slope of about 50.2 ± 2 mV and the detection limit of glucose was 2.0 × 10−5 mol L−1. The electrode had the good selectivity, sensitivity, stability and repeatability.  相似文献   

11.
A highly sensitive NOx sensor was designed and developed by electrochemical incorporation of copper nanoparticles (CuNP) on single-walled carbon nanotubes (SWCNT)-polypyrrole (PPy) nanocomposite modified Pt electrode. The modified electrodes were characterized by scanning electron microscopy and energy dispersive X-ray analysis. Further, the electrochemical behavior of the CuNP-SWCNT-PPy-Pt electrode was investigated by cyclic voltammetry. It exhibited the characteristic CuNP reversible redox peaks at −0.15 V and −0.3 V vs. Ag/AgCl respectively. The electrocatalytic activity of the CuNP-SWCNT-PPy-Pt electrode towards NOx is four-fold than the CuNP-PPy-Pt electrode. These results clearly revealed that the SWCNT-PPy nanocomposite facilitated the electron transfer from CuNP to Pt electrode and provided an electrochemical approach for the determination of NOx. A linear dependence (r2 = 0.9946) on the NOx concentrations ranging from 0.7 to 2000 μM, with a sensitivity of 0.22 ± 0.002 μA μM−1 cm−2 and detection limit of 0.7 μM was observed for the CuNP-SWCNT-PPy-Pt electrode. In addition, the sensor exhibited good reproducibility and retained stability over a period of one month.  相似文献   

12.
Tang B  Zhang L  Xu KH 《Talanta》2006,68(3):876-882
A new kind of near-infrared fluorescence agent, tricarbochlorocyanine dye (Cy.7.Cl), had been synthesized in house and used for near-infrared spectrofluorimetric determination of hydrogen peroxide (H2O2) by flow injection analysis (FIA) for the first time. The oxidation reaction of Cy.7.Cl with H2O2 occurred under the catalysis of horseradish peroxidase (HRP) and it was studied in detail. The possible reaction mechanism was discussed. Under optimal experimental conditions, fluorescence from Cy.7.Cl displayed excitation and emission maxima (ex/em) at 780 and 800 nm, respectively. The two linear working ranges were 1.86 × 10−7 to 4.11 × 10−7 mol L−1 and 4.11 × 10−7 to 7.19 × 10−6 mol L−1, respectively. The detection limit was 5.58 × 10−8 mol L−1 of H2O2. The effect of interferences was studied. The proposed method was successfully applied to the determination of hydrogen peroxide in rainwater, serum and plant samples.  相似文献   

13.
Li Z  Cui X  Zheng J  Wang Q  Lin Y 《Analytica chimica acta》2007,597(2):238-244
Carbon nanofibers (CNFs) with three microstructures, including platelet-carbon nanofibers (PCNFs), fish-bone-carbon nanofibers (FCNFs), and tube-carbon nanofibers (TCNFs), were synthesized, characterized, and evaluated for electrochemical sensing of hydrogen peroxide. The CNFs studied here show microstructures with various stacked morphologies. The sizes and graphite-layer ordering of the CNFs can be well controlled. Glassy carbon (GC) electrodes modified by CNFs were fabricated and compared for amperometric detection of hydrogen peroxide. Sensors based on PCNFs/GC, FCNFs/GC, and TCNFs/GC were used in the amperometric detection of H2O2 in solution by applying a potential of +0.65 V versus Ag/AgCl at the working electrode. The highest electrocatalytic performance was observed for PCNFs/GC among the three types of hydrogen peroxide sensors. The amperometric response of PCNFs/GC retained over 90% of the initial current of the first day up to 21 days. The linear range is from 1.80 × 10−4 to 2.62 × 10−3 M with a correlation coefficient larger than 0.999 and with a detection limit of 4.0 μM H2O2 (S/N = 3). The relative standard deviation for detecting 1.80 × 10−4 M H2O2 (N = 8) is 2.1% with an average response of 0.64 μA. The significant diversity of electrocatalytic activity of the CNFs toward the oxidation of hydrogen peroxide may result from the difference of morphologies, textural properties, and crystalline structures.  相似文献   

14.
Hua MY  Chen HC  Tsai RY  Lai CS 《Talanta》2011,85(1):631-637
The imine of polybenzimidazole (PBI) is chemically oxidized by hydrogen peroxide (H2O2) in the presence of acetic acid (AcOH). Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopies (XPS) showed that when the AcOH concentration remained constant, the degree of oxidation increased with increasing H2O2 levels. Moreover, the imine also exhibited electrochemical redox behavior. Based on these properties, a PBI-modified Au (PBI/Au) electrode was developed as an enzyme-free H2O2 sensor. At an applied potential of −0.5 V vs. Ag/AgCl, the current response of the PBI/Au electrode was linear with H2O2 concentration over a range from 0.075 to 1.5 mM, with a sensitivity of 55.0 μA mM−1 cm−2. The probe had excellent stability, with <5% variation from its initial response current after storage at 50 °C for 10 days. Potentially interfering species such as ascorbic or uric acid had no effect on sensitivity. Sensitivity improved dramatically when multiwalled carbon nanotubes (MWCNT) were incorporated in the probe. Under optimal conditions, the detection of H2O2 using a MWCNT-PBI/Au electrode was linear from 1.56 μM to 2.5 mM, with a sensitivity of 928.6 μA mM−1 cm−2. Analysis of H2O2 concentrations in urine samples using a MWCNT-PBI/Au electrode produced accurate real-time results comparable to those of traditional HPLC methods.  相似文献   

15.
A novel core-shell sphere with controlled shell thickness was synthesized by in situ chemical oxidative polymerization of pyrrole on FTS (Fe2O3/TiO2/SiO2 composite) surface. The dual porosity of 2-3 nm and 40-50 nm in FTS core particle provides the hybrids with a high surface area to volume ratio, which enormously facilitates the molecule diffusion process. Furthermore, the porous FTS particle encapsulate Fe2O3 and TiO2 leading to its synergetic interaction with the PPy coating based on FTIR analysis. The unique structure and composition of the hybrid spheres result in new sensing property that is not available from their single counterparts. Cyclic voltammetry results demonstrate that the spheres with appropriate concentration of PPy exhibit enhanced electrocatalytic activity toward the reduction of H2O2 in 0.1 M phosphate buffer solution. The sensing performance tests show that the hybrids possess good linear response in wide H2O2 concentration range (10-4000 μM) and high sensitivity to H2O2 (0.653 A M−1 cm−2) at room temperature. The formation mechanism of the spheres was proposed based on the fact that the FTS core was coated firstly by a smooth PPy layer and then PPy nanoparticles. The work reported here provides an alternative concept for preparation of functional materials with new nanostructures and properties.  相似文献   

16.
The determination of pKa value for the unstable chromium(VI) peroxide, CrO(O2)2(H2O) in aqueous solution is presented. The pKa value is found to be (1.55 ± 0.03). The kinetic decomposition of chromium(VI) peroxide is dependent on the concentration of hydrogen peroxide in the pH range between 2.5 and 4.0. We have proposed the possible explanation for the formation of triperoxo chromium complex of hydrogen peroxide which is dependent on decomposition. Activation of coordinate peroxide in chromium(VI) peroxide observed in the kinetic studies is by reduction of thiolato-cobalt(III) complex. The rate constant (M−1 s−1, 15 °C) for the oxygen atom transfer reaction from CrO(O2)2(OH) to (en)2Co(SCH2CH2NH2)2+ is found to be (25.0 ± 1.3).  相似文献   

17.
In this paper, a novel electrochemiluminescence (ECL) imaging sensor array was developed for determination of hydrogen peroxide (H2O2), which was based on Cu/Zn alloy galvanic cell generated ECL. In alkaline solution, Cu/Zn galvanic cell was formed because of corrosion effect, the galvanic cell could supply stable potential for ECL generation of luminol, and the weak ECL emission could be enhanced by H2O2. The galvanic cell sensor array was designed by putting Cu/Zn alloy in 96-well microtiter plates separately. The relative ECL intensity was proportional with the concentration of hydrogen peroxide in the range of 1.0 × 10−6 to 1.0 × 10−4 mol l−1 and the detection limit was 3.0 × 10−7 mol l−1 (3σ), the relative standard deviation (R.S.D.) for 11 parallel measurements of 1.0 × 10−5 mol l−1 H2O2 was 4.0%.  相似文献   

18.
α-Fe2O3 nanoparticles prepared using a simple solution-combusting method have been dispersed in chitosan (CH) solution to fabricate nanocomposite film on glass carbon electrode (GCE). The as-prepared α-Fe2O3 nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanocomposite film exhibits high electrocatalytic oxidation for nitric oxide (NO) and reduction for hydrogen peroxide (H2O2). The electrocatalytic oxidation peak is observed at +0.82 V (vs. Ag/AgCl) and controlled by diffusion process. The electrocatalytic reduction peak is observed at −0.45 V (vs. Ag/AgCl) and controlled by diffusion process. This α-Fe2O3-CH/GCE nanocomposite bioelectrode has response time of 5 s, linearity as 5.0 × 10−7 to 15.0 × 10−6 M of NO with a detection limit of 8.0 × 10−8 M and a sensitivity of −283.6 μA/mM. This α-Fe2O3-CH/GCE nanocomposite bioelectrode was further utilized in detection of H2O2 with a detection limit of 4.0 × 10−7 M, linearity as 1.0 × 10−6 to 44.0 × 10−6 M and with a sensitivity of 21.62 μA/mM. The shelf life of this bioelectrode is about 6 weeks under room temperature conditions.  相似文献   

19.
A conducting fluorine-doped tin oxide (FTO) electrode, first modified with zinc oxide nanorods (ZnONRs) and subsequently attached with photosynthesized silver nanoparticles (AgNPs), designated as AgNPs/ZnONRs/FTO electrode, was used as an amperometric sensor for the determination of hydrogen peroxide. The first layer (ZnONRs) was obtained by chemical bath deposition (CBD), and was utilized simultaneously as the catalyst for the photoreduction of Ag ions under UV irradiation and as the matrix for the immobilization of AgNPs. The aspect ratio of ZnONRs to be deposited was optimized by controlling the number of their CBDs to render enough surface area for Ag deposition, and the amount of AgNPs to be attached was controlled by adjusting the UV-irradiation time. The immobilized AgNPs showed excellent electrocatalytic response to the reduction of hydrogen peroxide. The resultant amperometric sensor showed 10-fold enhanced sensitivity for the detection of H2O2, compared to that without AgNPs, i.e., only with a layer of ZnONRs. Amperometric determination of H2O2 at −0.55 V gave a limit of detection of 0.9 μM (S/N = 3) and a sensitivity of 152.1 mA M−1 cm−2 up to 0.983 mM, with a response time (steady-state, t95) of 30-40 s. The selectivity of the sensor was investigated against ascorbic acid (AA) and uric acid (UA). Energy dispersive X-ray (EDX) analysis, transmission electron microscopic (TEM) image, X-ray diffraction (XRD) patterns, cyclic voltammetry (CV), and scanning electron microscopic (SEM) images were utilized to characterize the modified electrode. Sensing properties of the modified electrode were studied both by CV and amperometric analysis.  相似文献   

20.
Zhen Hai Li  Koji Oshita 《Talanta》2010,82(4):1225-637
Flow-injection analysis system (FIA system), which was based on Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide, was developed for the determination of hydrogen peroxide. The chromotropic acid has a fluorescence measured at λem = 440 nm (emission wavelength) with λex = 235 nm (excitation wavelength), and the fluorescence intensity at λem = 440 nm quietly decreased in the presence of hydrogen peroxide and Fe(II), which was caused by Fe(II)-catalyzed oxidation of chromotropic acid with hydrogen peroxide. By measuring the difference of fluorescence intensity, hydrogen peroxide (1.0 × 10−8-1.0 × 10−3 mol L−1) could be determined by the proposed FIA system, whose analytical throughput was 40 samples h−1. The relative standard deviation (RSD) was 1.03% (n = 10) for 4.0 × 10−8 mol L−1 hydrogen peroxide. The proposed FIA technique could be applied to the determination of hydrogen peroxide in rain water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号