首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
Polychlorotrifluoroethylene (PCTFE) in the form of beads was applied, as packing material for flow injection on-line column preconcentration and separation systems coupled with flame atomic absorption spectrometry (FAAS). Its performance characteristics were evaluated for trace copper determination in environmental samples. The on-line formed complex of metal with diethyldithiophosphate (DDPA) was sorbed on the PCTFE surface. Isobutyl methyl ketone (IBMK) at a flow rate of 2.8 mL min−1 was used to elute the analyte complex directly into the nebulizer-burner system of spectrophotometer. The proposed sorbent material reveal, excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates up to 15 mL min−1 without loss of retention efficiency. For copper determination, with 90 s preconcentration time the sample frequency was 30 h−1, the enhancement factor was 250, which could be further improved by increasing the loading (preconcentration) time. The detection limit (3s) was cL = 0.07 μg L−1, and the precision (R.S.D.) was 1.8%, at the 2.0 μg L−1 Cu(II) level. For lead determination, the detection limit was cL = 2.7 μg L−1, and the precision (R.S.D.) 2.2%, at the 40.0 μg L−1 Pb(II) level. The accuracy of the developed method was evaluated by analyzing certified reference materials and by recovery measurements on spiked natural water samples.  相似文献   

2.
In this study a method for the determination of low concentrations of silver in waters using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the on-line preconcentration system such as sample pH and flow rate, preconcentration time, eluent concentration and sorbent mass were studied. The optimum preconcentration conditions were obtained using sample pH in the range of 6.0-8.0, preconcentration time of 4 min at a flow rate of 3.5 mL min− 1, 0.5 mol L− 1 HNO3 eluent at a flow rate of 4.5 mL min− 1 and 35 mg of sorbent mass. With the optimized conditions, the preconcentration factor, precision, detection limit and sample throughput were estimated as 35 (for preconcentration of 14 mL sample), 3.8% (5.0 μg L− 1, n = 7), 0.22 μg L− 1 and 12 samples per hour, respectively. The developed method was successfully applied to mineral water and tap water, and accuracy was assessed through analysis of a certified reference material for water (APS-1071 NIST) and recovery tests, with recovery ranging from 94 to 101%.  相似文献   

3.
In this study a method for the determination of cadmium in fuel alcohol using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry was developed. The sorbent material used was a vermicompost commonly used as a garden fertilizer. The chemical and flow variables of the on-line preconcentration system were optimized by means of a full factorial design. The selected factors were: sorbent mass, sample pH, buffer concentration and sample flow rate. The optimum extraction conditions were obtained using sample pH in the range of 7.3-8.3 buffered with tris(hydroxymethyl)aminomethane at 50 mmol L−1, a sample flow rate of 4.5 mL min−1 and 160 mg of sorbent mass. With the optimized conditions, the preconcentration factor, limit of detection and sample throughput were estimated as 32 (for preconcentration of 10 mL sample), 1.7 μg L−1 and 20 samples per hour, respectively. The analytical curve was linear from 5 up to at least 50 μg L−1, with a correlation coefficient of 0.998 and a relative standard deviation of 2.4% (35 μg L−1, n = 7). The developed method was successfully applied to spiked fuel alcohol, and accuracy was assessed through recovery tests, with recovery ranging from 94% to 100%.  相似文献   

4.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 10.0–600.0 μg L−1 with a detection limit of 0.61 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 400.0 μg L−1 of Pb were 3.56 and 3.25%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Pb. The proposed method was successfully applied in the analysis of environmental water and vegetable samples. Good spiked recoveries over the range of 95.3–100.4% were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.  相似文献   

5.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.  相似文献   

6.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

7.
The present paper proposes the application of multiwall carbon nanotubes (MWCNTs) as a solid sorbent for lead preconcentration using a flow system coupled to flame atomic absorption spectrometry. The method comprises the preconcentration of Pb (II) ions at a buffered solution (pH 4.7) onto 30 mg of MWCNTs previously oxidized with concentrated HNO3. The elution step is carried out with 1.0 mol L−1 HNO3. The effect of the experimental parameters, including sample pH, sampling flow rate, buffer and eluent concentrations were investigated by means of a 24 full factorial design, while for the final optimization a Doehlert design was employed. Under the best experimental conditions the preconcentration system provided detection and quantification limits of 2.6 and 8.6 μg L−1, respectively. A wide linear range varying from 8.6 up to 775 μg L−1 (r > 0.999) and the respective precision (relative standard deviation) of 7.7 and 1.4% for the 15 and 200 μg L−1 levels were obtained. The characteristics obtained for the performance of the flow preconcentration system were a preconcentration factor of 44.2, preconcentration efficiency of 11 min−1, consumptive index of 0.45 mL and sampling frequency estimated as 14 h−1. Preconcentration studies of Pb (II) ions in the presence of the majority foreign ions tested did not show interference, attesting the good performance of MWCNTs. The accuracy of the method was assessed from analysis of water samples (tap, mineral, physiological serum and synthetic seawater) and common medicinal herbs submitted to the acid decomposition (garlic and Ginkgo Biloba). The satisfactory recovery values obtained without using analyte addition method confirms the feasibility of this method for Pb (II) ions determination in different type of samples.  相似文献   

8.
A new flow injection (FIA) procedure for the preconcentration of cadmium in urine using multiwalled carbon nanotubes (MWCNT) as sorbent and posterior electrothermal atomization atomic absorption spectrometry (ETA-AAS) Cd determination has been developed. Cadmium was retained in a column filled with previously oxidized MWCNTs and it was quantitatively eluted with a nitric acid solution. The parameters influencing the adsorption-elution process such as pH of the sample solution, amount of sorbent and flow rates of sample as well as eluent solutions have been studied. Cd concentration in the eluent was measured by ETA-AAS under the optimized conditions obtained. The results indicated the elimination of urine matrix effect as a consequence of the preconcentration process performed. Total recovery of cadmium from urine at pH 7.2 using a column with 45 mg of MWCNTs as sorbent and employing a HNO3 0.5 mol L−1 solution for elution was attained. The detection limit obtained was 0.010 μg L−1 and the preconcentration factor achieved was 3.4. The method showed adequate precision (RSD: 3.4-9.8%) and accuracy (mean recovery: 97.4-100%). The developed method was applied for the determination of cadmium in real urine samples from healthy people (in the range of 0.14-2.94 μg L−1) with satisfactory results.  相似文献   

9.
In this study a new method for determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line preconcentration system coupled to flame atomic absorption spectrometry (FAAS) was developed. Flow and chemical variables of the proposed system were optimized through multivariate designs. The limit of detection for cadmium was 5.50 μg L−1 and the precision was below 2.3% (35.0 μg L−1, n = 9). The analytical curve was linear from 5 to 150 μg L−1, with a correlation coefficient of 0.9993. The developed method was successfully applied to spiked alcohol fuel, and accuracy was assessed through recovery tests, with recovery ranging from 97.50 to 100%.  相似文献   

10.
Baytak S  Zereen F  Arslan Z 《Talanta》2011,84(2):319-323
A trace element preconcentration procedure is described utilizing a minicolumn of yeast (Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination of Cr, Cu, Fe, Mn, Ni and Zn from water samples by inductively coupled plasma atomic emission spectrometry. The elements were quantitatively retained on the column between pH 6 and 8. Elution was made with 5% (v/v) HNO3 solution. Recoveries ranged from 98 ± 2 (Cr) to 100 ± 4 (Zn) for preconcentration of 50 mL multielement solution (50 μg L−1). The column made up of 100 mg sorbent (yeast immobilized TiO2 NP) offers a capacity to preconcentrate up to 500 mL of sample solution to achieve an enrichment factor of 250 with 2 mL of 5% (v/v) HNO3 eluent. The detection limits obtained from preconcentration of 50 mL blank solutions (5%, v/v, HNO3, n = 11) were 0.17, 0.45, 0.25, 0.15, 0.33 and 0.10 μg L−1 for Cr, Cu, Fe, Mn, Ni and Zn, respectively. Relative standard deviation (RSD) for five replicate analyses was better than 5%. The retention of the elements was not affected from up to 500 μg L−1 Na+ and K+ (as chlorides), 100 μg L−1 Ca2+ (as nitrate) and 50 μg L−1 Mg2+ (as sulfate). The method was validated by analysis of freshwater standard reference material (SRM 1643e) and applied to the determination of the elements from tap water and lake water samples.  相似文献   

11.
A novel adsorbent of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 was prepared and was used as a packing material for flow injection (FI) micro-column (20 mm × 4.0 mm i.d.) separation/preconcentration on-line coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) simultaneous determination of trace metals (V, Cu, Pb, Cr) in environmental water samples. The experimental conditions for modified mesoporous TiO2 packed micro-column separation/preconcentration of the target metals were optimized and the interference of commonly coexisting ions was examined. The adsorption capacities of thiacalix[4]arene tetracarboxylate derivative modified mesoporous TiO2 for V, Cu, Pb and Cr were found to be 14.0, 11.7, 17.7 and 14.5 mg g− 1, respectively. The detection limits of the method were 0.09, 0.23, 0.50 and 0.15 µg L− 1 for V, Cu, Pb and Cr, respectively, with a preconcentration factor of 20. The precision of this method were 1.7% (V), 3.9% (Cu), 4.6% (Pb) and 2.9% (Cr) (n = 7, C = 5 µg L− 1), respectively. The developed method was applied to the determination of trace heavy metals in real samples and the recoveries for spiked samples were found to be in the range of 88.7-107.1%. For validation, a certified reference material of GSBZ50009-88 environmental water sample was analyzed and the determined values were in good agreement with the certified values.  相似文献   

12.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

13.
An on-line preconcentration procedure for the determination of bismuth by flame atomic absorption spectrometry (FAAS) has been described. Lewatit TP-207 chelating resin, including iminodiacetate group, packed in a minicolumn was used as adsorbent material. Bi(III) was sorbed on the chelating resin, from which it could be eluted with 3 mol L−1 HNO3 and then introduced directly to the nebulizer-burner system of FAAS. Best preconcentration conditions were established by testing different resin quantities, acidity of sample, types of eluent, sample and eluent solution volumes, adsorption and elution flow rates, and effect of interfering ions. The detection limit of the method was 2.75 μg L−1 while the relative standard deviation was 3.0% for 0.4 μg mL−1 Bi(III) concentration. The developed method has been applied successfully to the determination of bismuth in pharmaceutical cream, standard reference materials and various natural water samples with satisfactory results.  相似文献   

14.
Sayg?n Sönmez 《Talanta》2010,82(3):939-301
Polypyrrole-chloride was studied as a new sorbent for preconcentration of copper(II) using solid-phase extraction prior to determination by flame atomic absorption spectrometry. The sorbent showed an extremely high selectivity towards copper(II) as an anionic chelate, i.e. Cu (pyrocatechol violet)22− in the pH range of 4-7. Copper(II) as Cu (pyrocatechol violet)22− was selectively retained on a column containing 1.0 g of polypyrrole-chloride and quantitatively eluted by 3 mL of 2.0 mol L−1 nitric acid. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. When applied for preconcentration and determination of copper in tap water, waste water and hot spring water, the recoveries were found to be 96, 101 and 95%, respectively, with high precision (% relative standard deviation <4%) and low detection limit (0.87 μg L−1). Verification of the accuracy was carried out by the analysis of a standard reference material (BCR 715 wastewater-SRM). The relative error was +3.33%. The proposed method was successfully applied to the determination of copper in tap water, waste water and hot spring water samples.  相似文献   

15.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

16.
We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L−1 for Pb(II) and 0.37 μg L−1 for Cd(II), while the reproducibility of the method was 4.2% for lead (n = 5, 10.36 μg L−1 Pb(II)) and 3.9% for cadmium (n = 5, 5.62 μg L−1 Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples.  相似文献   

17.
A novel on-line preconcentration and determination system based on a fiber-packed column was developed for speciation analysis of Cr in drinking water samples prior to its determination by flame atomic absorption spectrometry (FAAS). All variables involved in the development of the preconcentration method including, pH, eluent type, sample and eluent flow rates, interfering effects, etc., were studied in order to achieve the best analytical performance. A preconcentration factor of 32 was obtained for Cr(VI) and Cr(III). The levels of Cr(III) species were calculated by difference of total Cr and Cr(VI) levels. Total Cr was determined after oxidation of Cr(III) to Cr(VI) with hydrogen peroxide. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. The relative standard deviation (R.S.D.) was 4.3% (C = 5 μg L−1 Cr(VI), n = 10, sample volume = 25 mL). The limit of detection (LOD) for both Cr(III) and Cr(VI) species was 0.3 μg L−1. Verification of the accuracy was carried out by the analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”). The method was successfully applied to the determination of Cr(III) and Cr(VI) species in drinking water samples.  相似文献   

18.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

19.
A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L−1 P, a sampling rate of 10 h−1, a limit of detection of 0.5 μg L−1 P and RSDs of 3.2% (n = 10, 100 μg L−1) and 7.7% (n = 10, 10 μg L−1). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min−1 the flow system offers a limit of detection of 0.04 μg L−1 P, a sampling rate of 5 h−1 and an RSD of 3.4% (n = 5, 2.0 μg L−1). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L−1 P range, using the multipoint standard addition method.  相似文献   

20.
A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 μL of 0.5 mol L−1 nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L−1 and the relative standard deviation (R.S.D.) for 10 replicates at 1 μg L−1 Cd2+ concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 μg L−1. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号