首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
It is shown that if A?Ωn?{Jn} satisfies
nkσk(A)?(n?k+1)2 σk?1(A)
(k=1,2,…,n)
, where σk(A) denotes the sum of all kth order subpermanent of A, then Per[λJn+(1?λ)A] is strictly decreasing in the interval 0<λ<1.  相似文献   

2.
In this paper we are constructing a recurrence relation of the form
i=0rωi(k)mk+i{λ} [f] = ω(k)
for integrals (called modified moments)
mk{λ}[f]df=?11 f(x)Ck(λ)(x)dx (k = 0,1,…)
in which Ck(λ) is the k-th Gegenbauer polynomial of order λ(λ > ?12), and f is a function satisfying the differential equation
i=0n Pi(x)f(i)(x) = p(x) (?1?x?1)
of order n, where p0, p1, …, pn ? 0 are polynomials, and mkλ[p] is known for every k. We give three methods of construction of such a recurrence relation. The first of them (called Method I) is optimum in a certain sense.  相似文献   

3.
In this Note we consider nonnegative solutions for the nonlinear equation
M+λ,ΛD2u+|x|αup=0
in RN, where M+λ,Λ(D2u) is the so called Pucci operator
M+λ,Λ(M)=λei<0eiei>0ei,
and the ei are the eigenvalues of M et Λ?λ>0. We prove that if u satisfies the decreasing estimate
lim|x|→+∞|x|β?1u(x)=0
for some β satisfying (β?1)(p?1)>2+α then u is radial. In a second time we prove that if p<N+2α+2N?2 and u is a nonnegative radial solution of (1), u(x)=g(r), such that g″ changes sign at most once, then u is zero. To cite this article: I. Birindelli, F. Demengel, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

4.
A study is made of the number of cycles of length k which can be produced by a general n-stage feedback shift register. This problem is equivalent to finding the number of cycles of length k on the so-called de Bruijn-Good graph (Proc. K. Ned. Akad. Wet.49 (1946), 758–764; J. London Math. Soc.21 (3) (1946), 169–172). The number of cycles of length k in such a graph is denoted by β(n, k). From the-de Bruijn-Good graph, it can be shown that β(n, k) is also the number of cyclically distinct binary sequences of length k which have all k successive sets of n adjacent digits (called “n windows”) distinct (the sequence to be considered cyclically). After listing some known results for β(n, k), we show that
β(k?3, k)=β(k, k)?2φk, 2+2 fork?5
, where φk, r? the number of integers l ? k such that (k, l) ? r, and (k, l) denotes the greatest common divisor of k and l. From the results of several computer programs, it is conjectured that
β(k?4, k)=β(k, k)?4φk, 3?2(k, 2)+10 (k?8)
,
β(k?5, k)=β(k, k)?8φk, 4?(k, 3)+19 (k?11)
β(k?6, k)=β(k, k)?16φk, 5?4(k, 2)?2(k, 3)+48 (k?15)
  相似文献   

5.
Presented in this report are two further applications of very elementary formulae of approximate differentiation. The first is a new derivation in a somewhat sharper form of the following theorem of V. M. Olovyani?nikov: LetNn (n ? 2) be the class of functionsg(x) such thatg(x), g′(x),…, g(n)(x) are ? 0, bounded, and nondecreasing on the half-line ?∞ < x ? 0. A special element ofNnis
g1(x) = 0 if ?∞ < x < ?1, g1(x) = (1 + x)nif ?1 ? x ? 0
. Ifg(x) ∈ Nnis such that
g(0) ? g1(0) = 1, g(n)(0) ? g1(n)(0) = n!
, then
g(v)(0) ? g1(v)(0)
for
1v = 1,…, n ? 1
. Moreover, if we have equality in (1) for some value of v, then we have there equality for all v, and this happens only if g(x) = g1(x) in (?∞, 0].The second application gives sufficient conditions for the differentiability of asymptotic expansions (Theorem 4).  相似文献   

6.
We prove a Szegö-type theorem for some Schrödinger operators of the form H = ?1 + V with V smooth, positive and growing like V0¦x¦k, k > 0. Namely, let πλ be the orthogonal projection of L2 onto the space of the eigenfunctions of H with eigenvalue ?λ; let A be a 0th order self-adjoint pseudo-differential operator relative to Beals-Fefferman weights ?(x, ξ) = 1, Φ(x, ξ) = (1 + ¦ξ¦2 + V(x))12 and with total symbol a(x, ξ); and let fC(R). Then
limλ→∞1rankπλtrf(πλλ)=limλ→∞1vol(H(x, ξ)?λ)H?λf(a(x, ξ))dxdξ
(assuming one limit exists).  相似文献   

7.
If f is a positive function on (0, ∞) which is monotone of order n for every n in the sense of Löwner and if Φ1 and Φ2 are concave maps among positive definite matrices, then the following map involving tensor products:
(A,B)?f[Φ1(A)?12(B)]·(Φ1(A)?I)
is proved to be concave. If Φ1 is affine, it is proved without use of positivity that the map
(A,B)?f[Φ1(A)?Φ2(B)?1]·(Φ1(A)?I)
is convex. These yield the concavity of the map
(A,B)?A1?p?Bp
(0<p?1) (Lieb's theorem) and the convexity of the map
(A,B)?A1+p?B?p
(0<p?1), as well as the convexity of the map
(A,B)?(A·log[A])?I?A?log[B]
.These concavity and convexity theorems are then applied to obtain unusual estimates, from above and below, for Hadamard products of positive definite matrices.  相似文献   

8.
Let k be an odd positive integer. Davenport and Lewis have shown that the equations
a1x1k+…+anxnk=0
with integer coefficients, have a nontrivial solution in integers x1,…, xN provided that
N?[36klog6k]
Here it is shown that for any ? > 0 and k > k0(?) the equations have a nontrivial solution provided that
N?8log 2+?k log k.
  相似文献   

9.
Let g = (g1,…,gr) ≥ 0 and h = (h1,…,hr) ≥ 0, g?, h?J, be two vectors of nonnegative integers and let λ ? J, λ ≥ 0, λ ≡ 0 mod d, where d denotes g.c.d. (g1,…,gr). Define
Δ(λ)=Δ(λg,h):=min?=1rx?h?:x??0,x?∈J,?=1?x?g?
It is shown in this paper that Λ(λ) is periodic in λ with constant jump. If i? {1,…,r} is such that
detgihig?h?? (?1,…r)
then
Δ(λ)+giΔ(λ)+hi
holds true for all sufficiently large λ, λ ≡ 0 mod d.  相似文献   

10.
Let A denote a decomposable symmetric complex valued n-linear function on Cm. We prove
6A·A62?2n2nn?16A?A62
, where · denotes the symmetric product and ? the tensor product. As a consequence we have per
MMMM?2n[per(M)]2
, where M is a positive semidefinite Hermitian matrix and per denotes the permanent function. A sufficient condition for equality in the matrix inequality is that M is a nonnegative diagonal matrix.  相似文献   

11.
Let
F(x) = k=onnkAkxk
An ≠ 0,
and
G(x) = k=onnkBkxk
Bn ≠ 0,
be polynomials with real zeros satisfying An?1 = Bn?1 = 0, and let
H(x) = k=on-2nkAkBkxk.
Using the recently proved validity of the van der Waerden conjecture on permanents, some results on the real zeros of H(x) are obtained. These results are related to classical results on composite polynomials.  相似文献   

12.
Suppose that A is a finite set-system of N elements with the property |AA′| = 0, 1 or k for any two different A, A?A. We show that for N > k14
|a|=?N(N?1)(N?k)(k2?k+1)(k2?2k+1)+N(N?1)k(k?1)+N+1
where equality holds if and only if k = q + 1 (q is a prime power) N = (qt+1 ? 1)(q ? 1) and A is the set of subspaces of dimension at most two of the t-dimensional finite projective space of order q.  相似文献   

13.
We study degeneration for ? → + 0 of the two-point boundary value problems
τ?±u := ?((au′)′ + bu′ + cu) ± xu′ ? κu = h, u(±1) = A ± B
, and convergence of the operators T?+ and T?? on L2(?1, 1) connected with them, T?±u := τ?±u for all
u?D(T?±, D(T?±) := {u ? L2(?1, 1) ∣ u″ ? L2(?1, 1) &; u(?1) = u(1) = O}, T0+u: = xu′
for all
u?D(TO+), D(TO+) := {u ? L2(?1, 1) ∣ xu′ ? L2(?1, 1) &; u(?1) = u(1) = O}
. Here ? is a small positive parameter, λ a complex “spectral” parameter; a, b and c are real b-functions, a(x) ? γ > 0 for all x? [?1, 1] and h is a sufficiently smooth complex function. We prove that the limits of the eigenvalues of T?+ and of T?? are the negative and nonpositive integers respectively by comparison of the general case to the special case in which a  1 and bc  0 and in which we can compute the limits exactly. We show that (T?+ ? λ)?1 converges for ? → +0 strongly to (T0+ ? λ)?1 if R e λ > ? 12. In an analogous way, we define the operator T?+, n (n ? N in the Sobolev space H0?n(? 1, 1) as a restriction of τ?+ and prove strong convergence of (T+?,n ? λ)?1 for ? → +0 in this space of distributions if R e λ > ?n ? 12. With aid of the maximum principle we infer from this that, if h?C1, the solution of τ?+u ? λu = h, u(±1) = A ± B converges for ? → +0 uniformly on [?1, ? ?] ∪ [?, 1] to the solution of xu′ ? λu = h, u(±1) = A ± B for each p > 0 and for each λ ? C if ? ?N.Finally we prove by duality that the solution of τ??u ? λu = h converges to a definite solution of the reduced equation uniformly on each compact subset of (?1, 0) ∪ (0, 1) if h is sufficiently smooth and if 1 ? ?N.  相似文献   

14.
We prove that on a compact n-dimensional spin manifold admitting a non-trivial harmonic 1-form of constant length, every eigenvalue λ of the Dirac operator satisfies the inequality λ2?n?14(n?2)infMScal. In the limiting case the universal cover of the manifold is isometric to R×N where N is a manifold admitting Killing spinors. To cite this article: A. Moroianu, L. Ornea, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

15.
Let Ms, be the number of solutions of the equation
X13 + X23+ … + Xs3=0
in the finite field GF(p). For a prime p ≡ 1(mod 3),
s=1 MsXs = x1 ? px+ x2(p ? 1)(2 + dx)1 ? 3px2 ? pdx3
,
M3 = p2 + d(p ? 1)
, and
M4 = p2 + 6(p2 ? p)
. Here d is uniquely determined by
4p = d2 + 27b2and d ≡ 1(mod 3)
.  相似文献   

16.
We study the bifurcation problem ?Δu=g(u)+λ|?u|2+μ in Ω,u=0 on , where λ,μ?0 and Ω is a smooth bounded domain in RN. The singular character of the problem is given by the nonlinearity g which is assumed to be decreasing and unbounded around the origin. In this Note we prove that the above problem has a positive classical solution (which is unique) if and only if λ(a+μ)<λ1, where a=limt→+∞g(t) and λ1 is the first eigenvalue of the Laplace operator in H10(Ω). We also describe the decay rate of this solution, as well as a blow-up result around the bifurcation parameter. To cite this article: M. Ghergu, V. R?dulescu, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

17.
It is proved that Wigner's semicircle law for the distribution of eigenvalues of random matrices, which is important in the statistical theory of energy levels of heavy nuclei, possesses the following completely deterministic version. Let An=(aij), 1?i, ?n, be the nth section of an infinite Hermitian matrix, {λ(n)}1?k?n its eigenvalues, and {uk(n)}1?k?n the corresponding (orthonormalized column) eigenvectors. Let v1n=(an1,an2,?,an,n?1), put
Xn(t)=[n(n-1)]-12k=1[(n-1)t]|vn1uf(n-1)|2,0?t?1
(bookeeping function for the length of the projections of the new row v1n of An onto the eigenvectors of the preceding matrix An?1), and let finally
Fn(x)=n-1(number of λk(n)?xn,1?k?n)
(empirical distribution function of the eigenvalues of Ann. Suppose (i) limnannn=0, (ii) limnXn(t)=Ct(0<C<∞,0?t?1). Then
Fn?W(·,C)(n→∞)
,where W is absolutely continuous with (semicircle) density
w(x,C)=(2Cπ)-1(4C-x212for|x|?2C0for|x|?2C
  相似文献   

18.
Let f(z), an analytic function with radius of convergence R (0 < R < ∞) be represented by the gap series ∑k = 0ckzλk. Set M(r) = max¦z¦ = r ¦f(z)¦, m(r) = maxk ? 0{¦ ck ¦ rλk}, v(r) = maxk ¦ ¦ ck ¦ rλk = m(r)} and define the growth constants ?, λ, T, t by
?λ=lim supr→R inf{log[Rr /(R?r)]?1log+log+M(r)}
, and if 0 < ? < ∞,
Tt=lim supr→R inf{[Rr /(R?r)]??log+M(r)}
. Then, assuming 0 < t < T < ∞, we obtain a decomposition theorem for f(z).  相似文献   

19.
20.
On Rn, n?1 and n≠2, we prove the existence of a sharp constant for Sobolev inequalities with higher fractional derivatives. Let s be a positive real number. For n>2s and q=2nn?2s any function f∈Hs(Rn) satisfies
6f62q?Sn,s(?Δ)s/2f22,
where the operator (?Δ)s in Fourier spaces is defined by (?Δ)sf(k):=(2π|k|)2sf(k). To cite this article: A. Cotsiolis, N.C. Tavoularis, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 801–804.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号