首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

2.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

3.
LetfA ρ (ρ>1), whereA ρ denotes the class of functions analytic in ¦z¦ <ρ but not in ¦z¦≤ρ. For any positive integerl, the quantity Δ l,n?1(f; z) (see (2.3)) has been studied extensively. Recently, V. Totik has obtained some quantitative estimates for \(\overline {\lim _{n \to \infty } } \max _{\left| z \right| = R} \left| {\Delta _{l,n - 1}^ - \left( {f;z} \right)} \right|^{1/n} \) . Here we investigate the order of pointwise convergence (or divergence) of Δ l,n?1(f; z), i.e., we study \(B_1 \left( {f;z} \right) = \overline {\lim _{n \to \infty } } \left| {\Delta _{l,n - 1} \left( {f;z} \right)} \right|^{1/n} \) . We also study some problems arising from the results of Totik.  相似文献   

4.
It is proved that for all fractionall the integral \(\int\limits_0^\infty {(p,\ell ) - cap(M_t )} dt^p\) is majorized by the P-th power norm of the functionu in the space ? p l (Rn) (here Mt={x∶¦u(x)¦?t} and (p,l)-cap(e) is the (p,l)-capacity of the compactum e?Rn). Similar results are obtained for the spaces W p l (Rn) and the spaces of M. Riesz and Bessel potentials. One considers consequences regarding imbedding theorems of “fractional” spaces in ?q(dμ), whereμ is a nonnegative measure in Rn. One considers specially the case p=1.  相似文献   

5.
слЕДУь п. к. сИккЕМА, Мы ИсслЕДУЕМ АппРОксИМ АцИОННыЕ сВОИстВА ОпЕРАтОРОВ $$u_\varrho ^\beta (f,x) = \frac{1}{{\beta _\varrho }}\int\limits_{ - \infty }^\infty {f(x - t)\beta ^\varrho (t) dt(\varrho \to \infty ).} $$ жДЕсьΒ — НЕОтРИцАтЕл ьНАь сУММИРУЕМАь ФУН кцИь, \(\beta _\varrho = \int\limits_{ - \infty }^\infty {\beta ^\varrho (t) dt} \) И ВыпОлНЕНы УслОВИь: (i)Β(0)=1 ИΒ НЕпРЕРыВНА В тО ЧкЕt=0, (ii) \(\mathop {\sup }\limits_{\left| t \right| > \delta } \beta (t)< 1\) Дль кАжДОгОδ>0. ДОкАжАНО, ЧтО ЁкспОНЕ НцИАльНыИ пОРьДОк Ап пРОксИМАцИИ МОжЕт Быть ДОстИгНУт тОлькО Дль ФУНкцИИ ВИДА (fx)=ax+b И (fx)=ae bx+c. ЁтО — ИсклУЧИтЕльНыЕ слУЧАИ, пОскОлькУ УкАжАННыЕ ФУНкцИИ ьВ льУтсь ЕДИНстВЕННыМ И НЕпОДВИжНыМИ тОЧкАМ И Дль ОпЕРАтОРОВU β ? . ДОкАжАНО тАкжЕ, ЧтО пР И УДАЧНОМ ВыБОРЕΒ МО жНО ДОБИтьсь «пОЧтИ Ёксп ОНЕНцИАльНОгО» пОРьДкА АппРОксИМАц ИИ. НАкОНЕц, В пОслЕДНЕИ т ЕОРЕМЕ УтВЕРжДАЕтсь, ЧтО сУЩЕстВУУт тАкИЕΒ Иf, ЧтОU β ? (f,x) пРИp→∞ РАсхОДьтсь НА МНОжЕстВЕ пОлОжИтЕл ьНОИ МЕРы.  相似文献   

6.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

7.
LetW(x):= exp(-{tiQ(x})), where, for example, Q(x) is even and convex onR, and Q(x)/logx → ∞ asx → ∞. A result of Mhaskar and Saff asserts that ifa n =a n (W) is the positive root of the equation $$n = ({2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi })\int_0^1 {{{a_n xQ'(a_n x)} \mathord{\left/ {\vphantom {{a_n xQ'(a_n x)} {\sqrt {1 - x^2 } }}} \right. \kern-\nulldelimiterspace} {\sqrt {1 - x^2 } }}dx,}$$ then, given any polynomialP n(x) of degree at mostn, the sup norm ofP n(x)W(a n x) overR is attained on [-1, 1]. In addition, any sequence of weighted polynomials {p n (x)W(a n x)} 1 that is uniformly bounded onR will converge to 0, for ¦x¦>1. In this paper we show that under certain conditions onW, a function g(x) continuous inR can be approximated in the uniform norm by such a sequence {p n (x)W(a n x)} 1 if and only if g(x)=0 for ¦x¦? 1. We also prove anL p analogue for 0W(x)=exp(?|x| α ), when α >1. Further applications of our results are upper bounds for Christoffel functions, and asymptotic behavior of the largest zeros of orthogonal polynomials. A final application is an approximation theorem that will be used in a forthcoming proof of Freud's conjecture for |x| p exp(?|x| α ),α > 0,p > ?1.  相似文献   

8.
For the singular operator $$Su = \int_a^b {\frac{{K(x, s) u (s)}}{{s - x}}} ds$$ invariant weight spacesλ α β , p (u(x)∈λ α β , p if 10,u (x) ρ (x)∈ H β 0 , 20.‖uL p0)<∞, ρ (x) = (x?a) (b ?x)1+β, ρ0(x)=(b?x)α(p?1), 0<α, β<1,p>1H 0 β is a Hölder space. Multiplicative inequalities of the type of Kh. Sh. Mukhtarov are also obtained.  相似文献   

9.
The product of spaces Φ × D is considered, where Φ is the set of all continuous, nondecreasing functions ?:[0,∞)→(0,∞), ?(0)=0, ?(t)→∞(t→∞), and D is the set of all right continuous functions ξ:(0,∞)→X; here X is some metric space. Two mappings are defined: the first is the projection q(?,ξ)=ξ, and the second is the change of time U(?,ξ)=ξº?. The following equivalence relation is defined on D: $$\xi _1 \sim \xi _2 \Leftrightarrow \exists _{\varphi _1 , \varphi _1 } \in \Phi :\xi _1 ^\circ \varphi _1 = \xi _2 ^\circ \varphi _2 $$ . Let? be the set of all equivalence classes, and let L be the mapping ξ4~ξ2, Lξ is called the curve corresponding to ξ. The following theorem is proved: two stochastic processes with probability measures P1 and P2 on D possess identical random curves (i.e.,P1ºL?1=P2ºL?1) if and only if there exist two changes of time (i.e., probability measures Q1 and Q2 on ?×D for which P1=Q1ºq?1, P2=Q2ºq?1 which take these two processes into a process with measure \(\tilde P\) (i.e., Q1ºu?1=Q2ºu?1,=~P) If (P x 1 )x∈X and (P x 2 )x∈X are two families of probability measures for which P x 1 ºL?1=P x 2 ºL?1?x∈X then for each x ε X the corresponding measures Q X 1 andQ X 2 can be found in the following manner. The set of regenerative times of the family \(\left( {\tilde P_x } \right)_{x \in X} \) contains all stopping times which are simultaneously regenerative times of the families (p x 1 )x∈X and (P x 2 )x∈X and possess a certain special property of first intersection.  相似文献   

10.
The following inequalities are shown to hold for the least uniform rational deviations Rn(f) of a function f(x), continuous and convex in the interval [a, b]: $$R_n (f) \leqslant C(v)\Omega (f)n^{ - 1} \overbrace {\ln \ldots \ln }^{vtimes}n$$ (ν is an integer, C(ν) depends only on ν, and Ω(f) is the total oscillation of f); $$R_n (f) \leqslant C_1 n^{ - 1} \overbrace {\ln \ldots \ln }^{vtimes}n\mathop {\inf }\limits_{(b - a)\chi _n \leqslant \lambda< b - a} \left\{ {\omega (\lambda ,f) + M(f)n^{ - 1} \ln \frac{{b - a}}{\lambda }} \right\}$$ (ν is an integer, C1(ν) depends only on ν, xn = exp (-n/(500 In2n)), ω (δ,f) is the modulus of continuity of f, and M(f) = max¦f(x) ¦.  相似文献   

11.
Let ?1<α≤0 and let $$L_n^{(\alpha )} (x) = \frac{1}{{n!}}x^{ - \alpha } e^x \frac{{d^n }}{{dx^n }}(x^{\alpha + n} e^{ - x} )$$ be the generalizednth Laguerre polynomial,n=1,2,… Letx 1,x 2,…,x n andx*1,x*2,…,x* n?1 denote the roots ofL n (α) (x) andL n (α)′ (x) respectively and putx*0=0. In this paper we prove the following theorem: Ify 0,y 1,…,y n ?1 andy 1 ,…,y n are two systems of arbitrary real numbers, then there exists a unique polynomialP(x) of degree 2n?1 satisfying the conditions $$\begin{gathered} P\left( {x_k^* } \right) = y_k (k = 0,...,n - 1) \hfill \\ P'\left( {x_k } \right) = y_k^\prime (k = 1,...,n). \hfill \\ \end{gathered} $$ .  相似文献   

12.
For a givenρ(1/2 <ρ < + ∞) let us set L ρ = {z: |arg z| = π/(2ρ)} and assume that a real valued measurable function ?(t) such that ?(t) ≥ 1(t ∈ L ρ ) and \(\mathop {\lim }\limits_{|t| \to + \infty } \varphi (t) = + \infty (t \in L_\rho )\) is defined on L ρ . Let C ? (L ρ ) denote the space of continuous functionsf(t) on L ρ such that \(\lim \tfrac{{f(t)}}{{\varphi (t)}} = 0\) , where the norm of an elementf is defined as: \(\parallel f\parallel = \mathop {\sup }\limits_{t \in L_\rho } \tfrac{{|f(t)|}}{{\varphi (t)}}\) . In this note we pose the question about the completeness of the system of functions of the Mittag-Leffler type {Eρ(ut; μ)} (μ ≥ 1, 0 ≤ u ≤a) or, what is the same thing, of the system of functions \(p(t) = \int_0^a {E_\rho (ut;\mu )d\sigma (u)} \) in C ? (L ρ ). The following theorem is proved: The system of functions of the Mittag-Leffler type is complete in C ? (L ρ ) if and only if sup |p(z)| ≡ +∞, z ∈ L ρ , where the supremum is taken over the set of functions p(t) such that ∥p(t) (t + 1)?1 ∥ ≤ 1.  相似文献   

13.
Let χ(S r n?1 )) be the minimum number of colours needed to colour the points of a sphere S r n?1 of radius $r \geqslant \tfrac{1} {2}$ in ? n so that any two points at the distance 1 apart receive different colours. In 1981 P. Erd?s conjectured that χ(S r n?1 )→∞ for all $r \geqslant \tfrac{1} {2}$ . This conjecture was proved in 1983 by L. Lovász who showed in [11] that χ(S r n?1 ) ≥ n. In the same paper, Lovász claimed that if $r < \sqrt {\frac{n} {{2n + 2}}}$ , then χ(S r n?1 ) ≤ n+1, and he conjectured that χ(S r n?1 ) grows exponentially, provided $r \geqslant \sqrt {\frac{n} {{2n + 2}}}$ . In this paper, we show that Lovász’ claim is wrong and his conjecture is true: actually we prove that the quantity χ(S r n?1 ) grows exponentially for any $r > \tfrac{1} {2}$ .  相似文献   

14.
Let R be a prime ring with center Z(R). For a fixed positive integer n, a permuting n-additive map ${\Delta : R^n \to R}$ is known to be permuting n-derivation if ${\Delta(x_1, x_2, \ldots, x_i x'_{i},\ldots, x_n) = \Delta(x_1, x_2, \ldots, x_i, \ldots, x_n)x'_i + x_i \Delta(x_1, x_2, \ldots, x'_i, \ldots, x_n)}$ holds for all ${x_i, x'_i \in R}$ . A mapping ${\delta : R \to R}$ defined by δ(x) = Δ(x, x, . . . ,x) for all ${x \in R}$ is said to be the trace of Δ. In the present paper, we have proved that a ring R is commutative if there exists a permuting n-additive map ${\Delta : R^n \to R}$ such that ${xy + \delta(xy) = yx + \delta(yx), xy- \delta(xy) = yx - \delta(yx), xy - yx = \delta(x) \pm \delta(y)}$ and ${xy + yx = \delta(x) \pm \delta(y)}$ holds for all ${x, y \in R}$ . Further, we have proved that if R is a prime ring with suitable torsion restriction then R is commutative if there exist non-zero permuting n-derivations Δ1 and Δ2 from ${R^n \to R}$ such that Δ1(δ 2(x), x, . . . ,x) =  0 for all ${x \in R,}$ where δ 2 is the trace of Δ2. Finally, it is shown that in a prime ring R of suitable torsion restriction, if ${\Delta_1, \Delta_2 : R^n \longrightarrow R}$ are non-zero permuting n-derivations with traces δ 1, δ 2, respectively, and ${B : R^n \longrightarrow R}$ is a permuting n-additive map with trace f such that δ 1 δ 2(x) =  f(x) holds for all ${x \in R}$ , then R is commutative.  相似文献   

15.
In this work, we consider the positive solutions to the singular problem $$ \left\{\begin{array}{ll} -\Delta u = am(x)u-f(u) - \dfrac{c}{u^{\alpha}} & {\rm in}\;\Omega,\\ u=0 & {\rm on}\; \partial\Omega, \end{array} \right. $$ where 0?<?α?<?1,a?>?0 and c?>?0 are constants, Ω is a bounded domain with smooth boundary $\partial\Omega$ , Δ is a Laplacian operator, and $f:[0,\infty] \longrightarrow{\mathbb R}$ is a continuous function. The weight functions m(x) satisfies m(x)?∈?C(Ω) and m(x)?>?m 0?>?0 for x?∈?Ω and also ||m||?∞??=?l?<?∞. We assume that there exist A?>?0, M?>?0, p?>?1 such that alu???M?≤?f(u)?≤?Au p for all u?∈?[0,?∞?). We prove the existence of a positive solution via the method of sub-supersolutions when $m_{0}a>\frac{2\lambda_{1} }{1+\alpha}$ and c is small. Here λ 1 is the first eigenvalue of operator ??Δ with Dirichlet boundary conditions.  相似文献   

16.
For even N ≥ 2 and δ 2N-3 (for N-2 or 4 we assume that δ > (N-1)/2) we find asymptotic approximations for the quantity $$E_R^\delta (H_{\rm N}^\omega ) = \mathop {sup}\limits_{f \in H_{\rm N}^\omega } \parallel f(x) - S_R^\omega (x,f)\parallel _ \in (R \to \infty ),$$ , where S R δ (x,f) is the spherical Riesz mean of order δ of the Fourier kernel of the functionf(x), and H N ω is the class of periodic functions of N variables whose moduli of continuity do not exceed a given convex modulus of continuity ω(δ). For N 2 and δ > 1/2 the result is known.  相似文献   

17.
Let σ n 2 (f, x) be the Cesàro means of second order of the Fourier expansion of the function f. Upper bounds of the deviationf(x)-σ n 2 (f, x) are studied in the metricC, while f runs over the class \(\bar W^1 C\) , i. e., of the deviation $$F_n^2 (\bar W^1 ,C) = \mathop {\sup }\limits_{f \in \bar W^1 C} \left\| {f(x) - \sigma _n^2 (f,x)} \right\|_c$$ . It is proved that the function $$g^* (x) = \frac{4}{\pi }\mathop \sum \limits_{v = 0}^\infty ( - 1)^v \frac{{\cos (2v + 1)x}}{{(2v + 1)^2 }}$$ , for whichg *′(x)=sign cosx, satisfies the following asymptotic relation: $$F_n^2 (\bar W^1 ,C) = g^* (0) - \sigma _n^2 (g^* ,0) + O\left( {\frac{1}{{n^4 }}} \right)$$ , i.e.g * is close to the extremal function. This makes it possible to find some of the first terms in the asymptotic formula for \(F_n^2 (\bar W^1 ,C)\) asn → ∞. The corresponding problem for approximation in the metricL is also considered.  相似文献   

18.
Suppose Φp, E (p>0 an integer, E ?[0, 2π]) is a family of positive nondecreasing functions? x(t) (t>0, x E) such that? x(nt)≤nP ? x(t) (n=0,1,...), tn is a trigonometric polynomial of order at most n, and Δ h l (f, x) (l>0 an integer) is the finite difference of orderl with step h of the functionf.THEOREM. Supposef (x) is a function which is measurable, finite almost everywhere on [0, 2π], and integrable in some neighborhood of each point xε E,? X εΦp,E and $$\overline {\mathop {\lim }\limits_{\delta \to \infty } } |(2\delta )^{ - 1} \smallint _{ - \delta }^\delta \Delta _u^l (f,x)du|\varphi _x^{ - 1} (\delta ) \leqslant C(x)< \infty (x \in E).$$ . Then there exists a sequence {t n } n=1 which converges tof (x) almost everywhere, such that for x ε E $$\overline {\mathop {\lim }\limits_{n \to \infty } } |f(x) - l_n (x)|\varphi _x^{ - 1} (l/n) \leqslant AC(x),$$ where A depends on p andl.  相似文献   

19.
LetΩ ? ?2 be a smooth bounded simply connected domain. Consider the functional $$E_\varepsilon (u) = \frac{1}{2}\int\limits_\Omega {\left| {\nabla u} \right|^2 + \frac{1}{{4\varepsilon ^2 }}} \int\limits_\Omega {(|u|^2 - 1)^2 } $$ on the classH g 1 ={u εH 1(Ω; ?);u=g on ?Ω} whereg:?Ω? → ? is a prescribed smooth map with ¦g¦=1 on ?Ω? and deg(g, ?Ω)=0. Let uu ε be a minimizer for Eε onH g 1 . We prove that uε → u0 in \(C^{1,\alpha } (\bar \Omega )\) as ε → 0, where u0 is identified. Moreover \(\left\| {u_\varepsilon - u_0 } \right\|_{L^\infty } \leqslant C\varepsilon ^2 \) .  相似文献   

20.
We prove optimal high-frequency resolvent estimates for self-adjoint operators of the form ${G=\left(i\nabla+b(x)\right)^2+V(x)}$ on ${L^2({\bf R}^n), n\ge 3}$ , where the magnetic potential b(x) and the electric potential V(x) are long-range and large. As an application, we prove dispersive estimates for the wave group ${{\rm e}^{it\sqrt{G}}}$ in the case n = 3 for potentials b(x), V(x) = O(|x|?2-δ ) for ${|x|\gg 1}$ , where δ > 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号