首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The crystallization kinetics of polypropylene (PP) with or without sodium benzoate as a nucleating agent were investigated by means of DSC and polarized optical microscopy in isothermal and nonisothermal modes. A modified Avrami equation was applied to the kinetic analysis of isothermal crystallization. The addition of the nucleating agent up to its saturation concentration increased the crystallization temperature by 15 °C and shortened both the isothermal and nonisothermal crystallization half‐times. It was concluded that the sodium benzoate acted as a good nucleating agent for α‐form PP. By adding the nuclefier to PP, adequately controlled spherulites increased the mechanical properties including especially the Izod impact strength and shortened cycle time of PP. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1001–1016, 2001  相似文献   

2.
A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer(HPP/EPR/Eb P) whose microstructures are similar to those of impact polypropylene copolymer(IPC) were prepared in order to systematically investigate the effects of composition on microstructure and crystallization behavior of IPC. The observation of primary phase morphology reveals that the dispersed phase with core-shell structure could be rebuilt in certain composition and excessive EPR leads to a bicontinuous phase structure in ternary blends. After undergoing same quiescent crystallization including isothermal and non-isothermal crystallization, these blend samples exhibit special composition-dependent melting behavior, i.e., the melting point increases markedly with the increase of EPR content until it turns down at a critical content(about 30 wt%). The crystallization behavior is mainly ascribed to the different nucleation abilities. It is suggested that although the compatibility between EPR and HPP components becomes worse with the increase of EPR content due to the increased interfacial area and the decreased concentration of Eb P, higher EPR content in the blend facilitates to heterogeneous nucleation except for the appearance of obvious bicontinuous phase structure.  相似文献   

3.
The influence of nanoclay on the morphology and properties of the polypropylene (PP)/ethylene–octene block copolymer (EOC) blend with double compatibilizers of maleated PP (PP‐g‐MA) and maleated EOC (EOC‐g‐MA) was investigated and compared with the nanocomposites containing either PP‐g‐MA or EOC‐g‐MA as a compatibilizer. X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy were utilized for morphological characterization in conjunction with dynamic mechanical thermal analysis, mechanical testing, and rheological evaluation of these nanocomposites. The results suggested that in the nanocomposite including both compatibilizers of PP‐g‐MA and EOC‐g‐MA, clay was dispersed as a mixed structure of intercalation and exfoliation in both phases of the polymer blend. Comparing the mechanical properties of the studied nanocomposite with nanocomposites of PP/EOC/PP‐g‐MA/clay and PP/EOC/EOC‐g‐MA/clay also indicated that the nanocomposite containing mixed compatibilizers displayed higher tensile modulus, tensile strength, and complex viscosity because of the better dispersion of clay in both phases. The results also confirmed the increased structural stability and reduced dispersed phase size of PP/EOC/PP‐g‐MA/EOC‐g‐MA blend in the presence of clay that proposed the compatibilization role of clay in this nanocomposite. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Crystallization behavior of polypropylene/polycarbonate blends   总被引:2,自引:0,他引:2  
Crystallization behavior and morphology of polypropylene (PP)/polycarbonate (PC) blends have been studied by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In the study of non-isothermal crystallization of the blends, the phenomenon of multiple crystallization peaks of PP/PC blends was related to the blend morphology in which PP was the dispersed phase as small droplets in the PC matrix. The phenomenon of a single crystallization peak of the PP/PC blends was related to the blend morphology in which PP was a continuous phase; in that case the crystallization peak temperatures of the blends were higher than that of the PP. The isothermal crystallization kinetics of the PP and PP/PC (80/20) blend were described by the Avrami equation. The results showed that the Avrami exponent of the PP/PC (80/20) blend was higher than that of the PP, and the crystallization rate of the PP/PC (80/20) blend was faster than that of the PP. The crystallization rate of the PP and PP/PC (80/20) blend were calculated according to the Hoffmann theory. Both the PP and PP/PC (80/20) blend had maximum crystallization rates. The temperature at the maximum crystallization rate for the PP/PC (80/20) blend was higher than that of the PP.  相似文献   

5.
用Ziegler-Natta(Z-N)催化剂MgCl2/TiCl4/BMF-AlEt3(BMF代表内给电子体9,9-二甲氧基甲基芴),采用分段聚合的方法制备了PP/EPR原位共混物,通过改变乙丙共聚的时间调节聚合物中乙烯的含量.使用核磁共振(13C-NMR)、凝胶渗透色谱(GPC)、示差扫描量热分析法(DSC)、动态力学分析(DMA)、扫描电子显微镜(SEM)和偏光显微镜(PLM)等研究了聚合物的结构和形态特征.研究发现,分段聚合制备的PP/EPR共混物是一种包括丙烯均聚物、乙丙无规和嵌段共聚物在内的多组分混合物.动态力学的结果显示混合物中聚丙烯与乙丙无规共聚物的玻璃化转变峰出现了内移现象,说明两者呈现部分相容性.扫描电镜的照片表明了聚丙烯基体与乙丙无规共聚物分散相之间的相界面模糊,两相之间的相容性较好.随着聚合物中乙烯含量的增加,分散相出现明显的塑性变形,同时,聚丙烯的结晶形态也发生明显的变化,球晶的尺寸逐渐变小,同时球晶变得不完善.  相似文献   

6.
The structure and mechanical properties of the injection‐molded products for the binary blends composed of an isotactic polypropylene (PP) and a rubbery ethylene‐1‐hexene copolymer (EHR) were studied. The following two types of blends were employed: one is the incompatible blend of PP and ethylene‐rich EHR; the other is the compatible blend of PP and 1‐hexene‐rich EHR. The incompatible blend shows a phase‐separated morphology, in which EHR domains in the skin layer highly orient to the flow direction. On the other hand, the compatible blend shows fairly homogeneous morphology in the skin and core regions, in which EHR molecules are dissolved into the amorphous PP region. The measurements of birefringence and infrared dichroism revealed that the magnitude of molecular orientation along the flow direction for the compatible blend is larger than that for the incompatible blend. Nevertheless, it was also found that anisotropy of the mechanical properties for the compatible blend is less prominent, which is attributed to lack of the mechanical connection between neighbor crystalline fragments aligned perpendicular to the flow direction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 701–713, 1999  相似文献   

7.
Phase structure of composite polypropylene (PP)/ethylene–propylene–rubber (EPR)/coated nano‐CaCO3 composites, used in the manufacture of bumpers, with and without compatibilizers has been investigated using scanning electron microscopy (SEM), dynamic mechanical analysis (DMA) mechanical tests, and differential scanning calorimetry (DSC). Blends of various compositions were prepared using a corotating twin‐screw extruder. The experimental results indicated that the dispersion of nanoparticles in (PP/EPR) depends on their surface (stearic acid and fatty acid coatings). In both cases, the final morphology is the core–shell structure in which EPR acts as the shell part encapsulating coated nano‐CaCO3. In this case, EPR‐g‐MAH copolymer does not improve the interface between (PP/EPR) and nanoparticles but PEP propylene ethylene copolymer should be preferentially localized at the interface of PP and (EPR/nano‐CaCO3) phases generating an improved adherence, which will ensure a better cohesion of the whole material. According to the nature of the compatibilizers and surface treatment, it is believed that the synergistic effect of both the EPR elastomer and CaCO3 nanoparticles should account for the balanced performance of the ternary composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
魏刚  余燕  黄锐 《高分子学报》2006,(9):1062-1068
采用马来酸酐接枝乙烯-辛烯共聚物弹性体(POE-g-MAH)与聚丙烯(PP)在双螺杆挤出机上进行熔融共混,制备了3种新型增韧改性剂.研究了增韧改性剂的种类及其用量对共混物的力学性能、相形态结构、熔融与结晶行为的影响.力学性能测试表明,POE-g-MAH与适量PP并用具有显著的协同增韧作用,当POE-g-MAH与PP的配比为70/30时,所得增韧改性剂(POEg2)具有最佳的增韧效果.当POEg2含量达到15%时,共混物的缺口冲击强度(Is)从纯PBT的7.5 kJ/m2提高到51.2 kJ/m2,与15%的纯POE-g-MAH弹性体增韧PBT具有相近的缺口冲击强度值.同时,共混物的拉伸强度(σb)损失最小.采用AFM和SEM观察发现,新型增韧改性剂作为分散相具有软壳-硬核结构.DSC测试表明,随增韧改性剂中PP含量增加到一定值时,壳-核结构中软壳层出现不完整现象,导致界面作用力减小,共混物的Is和σb都出现明显下降.  相似文献   

9.
The early stage of the morphology development has been studied for the blending of two immiscible polymers. Controlled experiments were carried out in a batch mixer in such a way that the rate of melting was low enough to follow up the morphology development of dilute and concentrated systems. For a dilute or semidilute polypropylene and polyamide 6 (PP/PA6) blend with 0.5, 5, or 10 wt % PA6, particles formed in the very early stage of melt blending were very small, of the order of 0.25 to 0.3 μm in radius. They immediately began to grow in size when no compatibilizer was added, indicative of coalescence even in the very early stage of melt blending and/or in very dilute systems (0.5 wt % PA6). Further growth of the particles was eliminated with the introduction of a graft copolymer compatibilizer providing evidence of the stabilizing effect of the copolymer from the very beginning of melting blending. However, the behavior of the morphology development of a concentrated PP/PA6 (80/20) system was similar to that reported in the literature. The average radius of the particles of the uncompatibilized blend decreased with increasing mixing time, whereas that of the compatibilized blend remained almost constant during mixing. The most favorable conditions to obtain a fine morphology seems to be the following: rate of melting/plastification of pellets < rate of dispersion (deformation + breakup) of the polymer melt to small particles < rate of stabilization (with an adequate copolymer). © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 601–610, 2001  相似文献   

10.
Nanocomposites based on a polypropylene (PP)/high density polyethylene (HDPE) blend were prepared using an organo-montmorillonite (15A) as a nano-filler and two maleated polyolefins (PE-MA and PP-MA) as compatibilizers. The phase morphology and typical physical properties of the prepared samples were examined. The nano-filler 15A was intercalated and/or partially exfoliated in the blend when PE-MA or PP-MA was present. The PE-MA facilitated the dispersibility of 15A to a better degree. The nano-filler 15A accelerated the crystallization of PP in the blends, whereas it hardly influenced the crystallization of HDPE. Moreover, at a slow cooling rate (i.e., 1 °C/min) the PP-MA induced a higher crystallization temperature for PP in the composite, while PE-MA impeded PP crystallization. On the other hand, the crystallization of HDPE in the composite was only slightly influenced by the presence of PE-MA or PP-MA. The thermal stability of PP/HDPE blend was enhanced after the addition of 15A regardless of the inclusion or not of PE-MA or PP-MA. The enhancement was more evident when the samples were scanned under an air environment than a N2 environment. The stiffness of PP/HDPE blend increased marginally after adding 15A and was slightly altered with the further inclusion of PP-MA. The presence of PE-MA in the composite caused a slight decline in the stiffness. The impact strength of PP/HDPE blend declined after the formation of nanocomposites, especially for the sample incorporating PP-MA.  相似文献   

11.
An indication for the mutual influence of LDPE and PP was the change of the morphology parameters of PE and PP at different ratios of the polymers in blends. That influence depends on the blend composition and is different for PE and PP. It is especially interesting in the blend PE75/PP25 where the influence between PE and PP shows dependence also on the sample geometry. Melting parameters, non-isothermal crystallization parameters - crystallization peak temperature Tc, crystallization begin temperature Tonset, half-width w1/2 of the crystallization peak, degree of crystallinity α and crystallization rate coefficient CRC, as well as the isothermal kinetics parameters showed dependence on the blend composition. It was established that PE is more stable then PP concerning the mutual influence of both polymers on their crystallization. It was established that PE affects the crystal nucleation of PP and causes a decreasing of PP spherulite size.  相似文献   

12.
The optimum condition of processing parameters (mixing temperature, rotor speed, fill factor, and blend ratio) and prediction models for the best key mechanical properties of ethylene propylene diene terpolymer/polypropylene thermoplastic vulcanizates (EPDM/PP TPVs) was investigated by using the Taguchi's optimization technique and data analysis. The results reveal that all of the processing parameters affected significantly the mechanical properties of the EPDM/PP TPVs, but specifically the blend ratio contributed more than 90% in effect size on tensile strength and tension set. There were three main factors, the mixing temperature, the fill factor, and the blend ratio, influencing the elongation at break. Furthermore, the mathematic models were effective and reliable in predicting the properties of TPVs. The correlation of mechanical properties, stress relaxation, and phase morphologies of the TPVs prepared from the predicted models was also investigated. It can be summarized that the morphological structure and stress relaxation of the TPVs were strongly governed by the EPDM content in the blend ratio. That is, the higher the EPDM content, the better phase morphology having smaller size of the vulcanized EPDM particles distributed in the PP matrix and the higher rate of stress relaxation. Moreover, these two properties were then principally pushing the mechanical characteristics of the EPDM/PP TPVs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Two polypropylene alloys (Samples A and B), as impact polypropylene (PP) with similar ethylene contents and melt indices but different impact properties at low temperatures, are fractionated into eight fractions using preparative temperature rising elution fractionation. The microstructure of the original samples and their fractions are studied using high-temperature gel permeation chromatography, Fourier transform infrared spectroscopy, 13C nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. The results indicate that the two alloys are mainly composed of four portions: ethylene–propylene random copolymer (EPR), ethylene–propylene segmented copolymer, ethylene–propylene block copolymer, and propylene homopolymer. Sample A contains more EPR and more fractions with higher isotacticity eluted at 120 and 140 °C than Sample B. The difference in the microstructure distributions of both PP alloys results in observable differences in their mechanical properties: Sample A has better impact toughness and possesses higher rigidity than Sample B. Sample A also exhibits better balance between toughness and stiffness.  相似文献   

14.
For the poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) blend system, the addition of a barium sulfate (BaSO4) particle, the surface of which was modified with a titanate coupling agent, suppressed the transesterification reaction. The polyester chain ends, considered one of the main sites of transesterification reactions, were blocked through a chemical reaction with the surface hydroxyl groups of the BaSO4 particle; a block copolymer‐like architecture was obtained with a BaSO4 linkage. The formation of the block copolymer‐like structure for the polyesters stuck to the BaSO4 particle facilitated crystallization by providing a crystallization nucleus without a significant transesterification reaction, resulting in higher mechanical properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2589–2597, 2001  相似文献   

15.
The phase morphology, crystallisation behaviour and mechanical properties of isotactic polypropylene (iPP)/high density polyethylene (HDPE) blends were investigated. It was found that the properties are intimately related to each other. The morphology of the blends showed a two phase structure in which the minor phase was dispersed as domains in the major continuous matrix phase. The domain size of the dispersed phase increased with increasing concentration of that phase due to coalescence. It was also found that the domain size of the dispersed phase depends on the viscosity difference between the two phases. For a given HDPE/iPP blend, where HDPE is the matrix and iPP is the dispersed phase, the iPP domains were smaller than HDPE domains of the corresponding iPP/HDPE blend where iPP is the matrix and HDPE is the dispersed phase. A co-continuous morphology was observed at 50/50 PP/HDPE composition. Crystallinity studies revealed that blending has not much effect on the crystalline melting point of polypropylene and high density polyethylene. The crystallisation enthalpy and heat of fusion values of HDPE and PP in the blend were decreased as the amount of the other component increased. The variation in percent crystallinity of HDPE and PP in the blend was found to depend on the morphology of the blend. All the mechanical properties except Young's modulus and hardness showed negative deviation from the additivity line. This is due to the incompatibility of these blends.  相似文献   

16.
微层共挤出(PP+EVOH)/PP阻隔材料的结构与性能研究   总被引:3,自引:0,他引:3  
李婷  李姜  张玉清  杜芹  郭少云 《高分子学报》2009,(12):1226-1231
利用微层共挤出技术制备了具有交替层状结构的(PP+EVOH)/PP复合材料,其中PP为聚丙烯,EVOH为乙烯-乙烯醇其聚物.通过扫描电子显微镜观察、气体渗透实验、差示扫描量热仪分析以及力学性能测试研究了微层共挤出复合材料的形态结构及其对复合材料气体阻隔性能、力学性能以及结晶性能的影响.研究结果表明,通过微层共挤出技术,PP层和(PP+EVOH)层沿挤出方向交替排列,EVOH在PP基体中的的分散形态由零维球形变为一维纤维状,进而演变为二维片状.这些形态导致微层共挤出材料的氮气渗透系数和断裂伸长率较普通共混物分别下降了两个数量级和提高了27倍,并且显著影响其结晶行为.当层数超过64层后,由于PP层减薄,界面增多,EVOH不仅对(PP+EVOH)层中PP相存在结晶成核作用,而且对PP层也有结晶成核作用.  相似文献   

17.
In this work blends of poly(ethylene-co-vinyl alcohol) (EVOH) with different ethylene contents (27, 32, 38 and 44 mol%) and poly(methyl methacrylate) (PMMA) were prepared by mechanical mixing in the melted state. The miscibility and melting behavior as a function of blend composition and the ethylene content in EVOH copolymers were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The morphology of the cryofractured surfaces was examined by scanning electron microscopy (SEM). DSC and DMTA data show that EVOH/PMMA blends are immiscible, independent of EVOH and blend composition. The SEM analysis in agreement with DMTA analysis indicates that the morphology of phases depends on the blend composition, with phase inversion occurring as the concentration of one or other polymer component increases. However, the copolymer composition apparently does not affect the domain size distribution for blends containing 20 wt% of EVOH or 20 wt% of PMMA. A better phase adhesion is observed mainly for blends with 50 wt% of each polymer component.  相似文献   

18.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

19.
制备了一种新型聚丙烯 丁苯橡胶 纳米碳酸钙三元纳米复合材料 .研究结果显示 ,复合材料中的大多数纳米碳酸钙粒子被包藏在丁苯橡胶中 ,并与之共同形成分散于聚丙烯树脂中的分散相 ,这种聚丙烯纳米复合材料具有高刚性、高韧性、高耐热性和高的结晶速率 .系统研究了成核剂苯甲酸钠的加入和纳米碳酸钙的用量对该类纳米复合材料相态结构、结晶形态和结晶动力学的影响 ,以及具有包藏结构的分散相粒径和PP中β晶含量对材料性能的影响 .结果表明 ,苯甲酸钠的加入和纳米碳酸钙用量的提高均可使体系中分散相粒径减小 ,结晶速率加快 ,进而使材料的韧性、刚性和耐热性提高 .  相似文献   

20.
The structure and properties of presumed block copolymers of polypropylene (PP) with ethylene-propylene random copolymers (EPR), i.e., PP-EPR and PP-EPR-PP, have been investigated by viscometry, transmission electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, gel permeation chromatography, wide-angle x-ray diffraction, and other techniques testing various mechanical properties. PP-EPR and PP-EPR-PP were synthesized using δ-TiCl3-Et2-AlCl as a catalyst system. The results indicate that the intrinisic viscosity of these polymers increases with each block-building step, whereas the intrinsic viscosity of those prepared by chain transfer reaction (strong chain-transfer reagent hydrogen was introduced between block-building steps during polymerization) hardly changes with the reaction time. Compared with PP/EPR blends, PP-EPR-PP block copolymers have lower PP and polyethylene crystallinity, and lower melting and crystallization temperatures of crystalline EPR. Two relaxation peaks of PP and EPR appear in the dynamic spectra of blends. They merge into a very broad relaxation peak with block sequence products of the same composition, indicating good compatibility between PP and EPR in the presence of block copolymers. Varying the PP and EPR content affects the crystallinity, density, and morphological structure of the products, which in turn affects the tensile strength and elongation at break. Because of their superior mechanical properties, sequential polymerization products containing PP-EPR and PP-EPR-PP block copolymers may have potential as compatibilizing agents for isotactic polypropylene and polyethylene blends or as potential heat-resistant thermoplastic elastomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号