首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effect of particle shape modification on the segregation reduction of enzyme granules in laundry detergent powder mixtures was investigated,both experimentally and computationally using Deseret Element Method(DEM).The shape of modified enzyme particles was in such a way that the large and dense enzyme particles were layered by other fine particles in the detergent powder,by means of a process known in the literature as“seeded granulation”.It is found that the homogeneity of modified enzyme particles could be improved significantly comparing to the original spherical enzyme particles in powder mixtures.Overall,the results of this research demonstrated that the segregation-induced properties of the dense/spherical enzyme particles could be lowered by altering their shape,which could enable the enzyme particles to behave almost similar to other ingredients during the pile formation process.  相似文献   

2.
Open-sided draft tubes provide an optimal gas distribution through a cross flow pattern between the spout and the annulus in conical spouted beds.The design,optimization,control,and scale-up of the spouted beds require precise information on operating and peak pressure drops.In this study,a multi-layer perceptron(MLP)neural network was employed for accurate prediction of these hydrodynamic characteristics.A relatively huge number of experiments were accomplished and the most influential dimensionless groups were extracted using the Buckingham-pi theorem.Then,the dimensionless groups were used for developing the MLP model for simultaneous estimation of operating and peak pressure drops.The iterative constructive technique confirmed that 4-14-2 is the best structure for the MLP model in terms of absolute average relative deviation(AARD%),mean square error(MSE),and regression coefficient(R2).The developed MLP approach has an excellent capacity to predict the transformed operating(MSE=0.00039,AARD%=1.30,and R2=0.76099)and peak(MSE=0.22933,AARD%=11.88,and R2=0.89867)pressure drops.  相似文献   

3.
The main aims of this study are to investigate the hydrodynamic performance of an autonomous underwater vehicle(AUV),calculate its hydrodynamic coefficients,and consider the flow characteristics of underwater bodies.In addition,three important parts of the SUBOFF bare hull,namely the main body,nose,and tail,are modified and redesigned to improve its hydrodynamic performance.A three-dimensional(3D)simulation is carried out using the computational fluid dynamics(CFD)method.To simulate turbulence,the k-ωshear stress transport(SST)model is employed,due to its good prediction capability at reasonable computational cost.Considering the effects of the length-to-diameter ratio(LTDR)and the nose and tail shapes on the hydrodynamic coefficients,it is concluded that a hull shape with bullet nose and sharp tail with LTDR equal to 7.14 performs better than the SUBOFF model.The final proposed model shows lower drag by about 14.9%at u=1.5 m·s^-1.Moreover,it produces 8 times more lift than the SUBOFF model at u=6.1 m·s^-1.These effects are due to the attachment of the fluid flow at the tail area of the hull,which weakens the wake region.  相似文献   

4.
The mathematical model of a semiconductor device is governed by a system of quasi-linear partial differential equations.The electric potential equation is approximated by a mixed finite element method,and the concentration equations are approximated by a standard Galerkin method.We estimate the error of the numerical solutions in the sense of the Lqnorm.To linearize the full discrete scheme of the problem,we present an efficient two-grid method based on the idea of Newton iteration.The main procedures are to solve the small scaled nonlinear equations on the coarse grid and then deal with the linear equations on the fine grid.Error estimation for the two-grid solutions is analyzed in detail.It is shown that this method still achieves asymptotically optimal approximations as long as a mesh size satisfies H=O(h^1/2).Numerical experiments are given to illustrate the efficiency of the two-grid method.  相似文献   

5.
Effective enhanced model for a large deformable soft pneumatic actuator   总被引:1,自引:0,他引:1  
Soft pneumatic actuators have been widely used for implementing sophisticated and dexterous movements,due to numerous fascinating features compared with their rigid counterparts.Relatively speaking,modeling and analysis of an entire soft pneumatic actuator considering contact interaction between two adjacent air chambers is extremely rare,which is exactly what we are particularly interested in.Therefore,in order to establish an accurate mechanical model and analyze the overall configuration and stress distribution for the soft pneumatic actuator with large deflection,we consider the contact interaction of soft materials rather than hard materials,to produce an effective enhanced model for soft contact of a large deformable pneumatic actuator.In this article,a multiple-point contact approach is developed to circumvent the mutual penetration problem between adjacent air chambers of the soft actuator that occurs with the single-point contact approach employed in linear elastic rigid materials.In contrast to the previous simplified rod-based model that did not focus on contact interaction which was adopted to clarify the entire deformation of the actuator,the present model not only elaborates nonlinear large deformation and overall configuration variations,but also accurately delineates stress distribution law inside the chamber structure and the stress concentration phenomenon.By means of a corresponding static experiment,a comparison of the simulation results with experimental data validates the effectiveness and accuracy of this model employing a multiple-point contact approach.Excellent simulation of the actual bending deformation of the soft actuator is obtained,while mutual penetration is successfully circumvented,whereas the model with single-point contact cannot achieve those goals.Finally,as compared with the rod-based model,the results obtained using the proposed model are more consistent with experimental data,and simulation precision is improved.  相似文献   

6.
In this study,the optical flow method is used to measure the velocity distribution of a granular flow in a rectangular quasi-two-dimensional silo.Using the velocity gradient,a free-fall arch(FFA)is obtained and its geometric characteristics are calculated.A parabola-shaped FFA structure is discovered above the orifice in the steady flow state.The shape of the FFA affects the flow rate through the orifice.Furthermore,as jamming begins to occur,the geometry of the FFA disappears gradually from both sides and then from the middle;finally,the FFA disappears completely in the state of jamming.As the boundary between finite-stress and stress-free regions,the FFA facilitates further studies regarding the discontinuity of the stress area above the orifice.  相似文献   

7.
The existing drag models are mostly based on the assumption of homogenous fluidization.However,the use of a homogeneous drag model to predict a heterogeneous granular flow system will cause a deviation.In this study,we developed a drag force model based on the assumption of heterogeneous fluidization.To prevent weakening of the heterogeneous characteristics in the drag force formula,we propose a finite average statistical method to filter the information of the heterogeneous granular cluster.The filtered information was used to fit the modified drag formula,which can reflect the heterogeneity of the granular cluster considering different configurations.A comparison shows that the new proposed drag formula filtered by the finite average statistical method fits well with energy minimization multi-scale simulation results.  相似文献   

8.
The turbulent combustion flow modeling is performed to study the effects of CO_2 addition to the fuel and oxidizer streams on the thermochemical characteristics of a swirl stabilized diffusion flame. A flamelet approach along with three well-known turbulence models is utilized to model the turbulent combustion flow field. The k-ω shear stress transport(SST) model shows the best agreement with the experimental measurements compared with other models. Therefore, the k-ω SST model is used to study the effects of CO_2 dilution on the flame structure and strength, temperature distribution, and CO concentration. To determine the chemical effects of CO_2 dilution, a fictitious species is replaced with the regular CO_2 in both the fuel stream and the oxidizer stream. The results indicate that the flame temperature decreases when CO_2 is added to either the fuel or the oxidizer stream. The flame length reduction is observed at all levels of CO_2 dilution. The H radical concentration indicating the flame strength decreases, following by the thermochemical effects of CO_2 dilution processes. In comparison with the fictitious species dilution, the chemical effects of CO_2 addition enhance the CO mass fraction. The numerical simulations show that when the dilution level is higher, the rate of the flame length reduction is more significant at low swirl numbers.  相似文献   

9.
Urban road dust was collected from Vellore City,Tamil Nadu,India,and analyzed.Scanning electron microscopy(SEM)was used to examine road dust from nine sampling locations in the study region.SEM image analysis was used to identify various shape factors of collected dust particles.The equivalent spherical diameter of most particles was between 10μm and 30μm.Fine particles had greater concentrations at locations with higher traffic flow.Particles were categorized into four classes based on their shape factors,viz.,spherical,mineral,elongated,or irregular.Spherical particles had the smallest mean equivalent diameter(1.95μm)and mineral particles had the largest diameter(33.3μm).Spherical particles made up the smallest portion of road dust(0-12%)in the study region and mineral particles made up the largest(45-65%).Elongated and irregular particles,each made up 23-30%of road dust.Electron dispersive X-ray spectroscopy analysis was used to identify the elemental composition of dust particles.Spherical particles were mostly from combustion sources and mineral particles were largely of crustal origin.No individual source was found for irregular and elongated particles.Biological debris was the major source of irregular particles.  相似文献   

10.
An axially variable-length solid element with eight nodes is proposed by integrating the arbitrary Lagrangian-Eulerian (ALE) formulation and the absolute nodal coordinate formulation (ANCF). In addition to the nodal positions and slopes of eight nodes, two material coordinates in the axial direction are used as the generalized coordinates. As a consequence, the nodes in the ALE-ANCF are not associated with any specific material points and the axial length of the solid element can be varied over time. These two material coordinates give rise to a variable mass matrix and an additional inertial force vector. Computationally efficient formulae of the additional inertial forces and elastic forces, as well as their Jacobians, are also derived. The dynamic equation of a flexible multibody system (FMBS) with variable-length bodies is presented. The maximum and minimum lengths of the boundary elements of an FMBS have to be appropriately defined to ensure accuracy and non-singularity when solving the dynamic equation. Three numerical examples of static and dynamic problems are given to validate the variable-length solid elements of ALE-ANCF and show their capability.  相似文献   

11.
The paper presents a new study on a tri-layer thin plate.Shadow moiré implemented with an advanced phase unwrapping technique is employed to obtain actual flexural deformation of a real-life plate sample subjected to thermal loads.An analytical model is re-formulated to provide the plate with global closed-form solutions of the plate deflection as well as the interfacial stress and strain.With the measurements and the solutions available,an inverse iterative approach is developed to evaluate and maximize th...  相似文献   

12.
This article aims at solving a two-dimensional inverse heat conduction problem in order to retrieve both the thermal diffusivity and heat source field in a thin plate. A spatial random heat pulse is applied to the plate and the thermal response is analysed. The inverse approach is based on the minimisation of a nodal predictive error model, which yields a linear estimation problem. As a result of this approach, the sensitivity matrix is directly filled with experimental data, and thus is partially noisy. Bayesian estimators, such as the Maximum A Posteriori and a Markov Chain Monte Carlo approach (Metropolis–Hastings), are implemented and compared with the Ordinary Least Squares solution. Simulated temperature measurements are used in the inverse analysis. The nodal strategy relies on the availability of temperature measurements with fine spatial resolution and high frequency, typical of nowadays infrared cameras. The effects of both the measurement errors and of the model errors on the inverse problem solution are also analysed.  相似文献   

13.
A matrix technique is formulated to efficiently solve stationary two-dimensional thermo-elasticity problems in simply supported multilayered beams and plates with an arbitrary number of layers which may be in imperfect mechanical and thermal contact. The method uses local transfer matrices and continuity conditions at the layer interfaces to establish explicit relationships between the unknown integration constants in the solution of a generic layer and those of the first layer. Explicit expressions are then derived for temperature, displacements and stresses through the imposition of the boundary conditions at the top and bottom surfaces of the plate. The dimensionless expressions allow to easily generate exact solutions, also for plates with many layers and interfacial thermal and mechanical imperfections. The solutions can be used for parametric analyses, to investigate the influence of the inhomogeneous material structure and interfacial imperfections on local fields or to verify the accuracy of approximate theories and numerical models.  相似文献   

14.
The moiré hole drilling method in a biaxially loaded infinite plate in plane stress is an inverse problem that exhibits a dual nature: the first problem results from first drilling the circular hole and then applying the biaxial loads, while the other problem arises from doing the opposite, i.e., first applying the biaxial load and then drilling the circular hole. The first problem is hardly ever addressed in the literature but implies that either separation of stresses or material property identification may be achieved from interpreting the moiré signature around the hole. The second is the well-known problem of determination of residual stresses from interpreting the moiré fringe orders around the hole. This paper addresses these inverse problem solutions using the finite element method as the means to model the plate with a hole, rather than the typical approach using the Kirsch solution, and a least-squares optimization approach to resolve for the quantities of interest. To test the viability of the proposed method three numerical simulations and one experimental result in a finite width plate are used to illustrate the techniques. The results are found to be in excellent agreement. The simulations employ noisy data to test the robustness of this approach. The finite-element-method-based inverse problem approach employed in this paper has the potential for use in applications where the specimen shape and boundary conditions do not conform to symmetric or well-used shapes. Also, it is a first step in testing similar procedures in three-dimensional samples to assess the residual stresses in materials.  相似文献   

15.
A nonlinear inverse problem utilizing the Conjugate Gradient Method (CGM) of minimization is used successfully to estimate the temporally and circumferentially varying thermal contact conductance of a plate finned-tube heat exchanger by reading the simulated transient temperature measurement data from the thermocouples located on the plate. The thermal properties of the fin and tube are assumed to be functions of temperature, and this makes the problem nonlinear. It is assumed that no prior information is available on the functional form of the unknown thermal contact conductance in the present study, thus, it is classified as the function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using the simulated temperature measurements. Finally the inverse solutions with and without the consideration of temperature-dependent thermal properties are compared. Results show that when the nonlinear inverse calculations are performed an excellent estimation on the thermal contact conductance can be obtained with any arbitrary initial guesses within a couple of minute's CPU time on a HP-730 workstation.  相似文献   

16.
A new type of plate theory for the nonlinear analysis of laminated plates in the presence of delaminations and other history-dependent effects is presented. The formulation is based on a generalized two length scale displacement field obtained from a superposition of global and local displacement effects. The functional forms of global and local displacement fields are arbitrary. The theoretical framework introduces a unique coupling between the length scales and represents a novel two length scale or local-global approach to plate analysis. Appropriate specialization of the displacement field can be used to reduce the theory to any currently available, variationally derived, displacement based (discrete layer, smeared, or zig-zag) plate theory.The theory incorporates delamination and/or nonlinear elastic or inelastic interfacial behavior in a unified fashion through the use of interfacial constitutive (cohesive) relations. Arbitrary interfacial constitutive relations can be incorporated into the theory without the need for reformulation of the governing equations. The theory is sufficiently general that any material constitutive model can be implemented within the theoretical framework. The theory accounts for geometric nonlinearities to allow for the analysis of buckling behavior.The theory represents a comprehensive framework for developing any order and type of displacement based plate theory in the presence of delamination, buckling, and/or nonlinear material behavior as well as the interactions between these effects.The linear form of the theory is validated by comparison with exact solutions for the behavior of perfectly bonded and delaminated laminates in cylindrical bending. The theory shows excellent correlation with the exact solutions for both the inplane and out-of-plane effects and the displacement jumps due to delamination. The theory can accurately predict the through-the-thickness distributions of the transverse stresses without the need to integrate the pointwise equilibrium equations. The use of a low order of the general theory, i.e. use of both global and local displacement fields, reduces the computational expense compared to a purely discrete layer approach to the analysis of laminated plates without loss of accuracy. The increased efficiency, compared to a solely discrete layer theory, is due to the coupling introduced in the theory between the global and local displacement fields.  相似文献   

17.
The elastic analysis of interfacial stresses in plated beams has been the subject of several investigations. These studies provided both first-order and higher-order solutions for the distributions of interfacial shear and normal stresses close to the plate end in the elastic range. The notable attention devoted to this topic was driven by the need to develop predictive models for plate end debonding mechanisms, as the early models of this type adopted debonding criteria based on interfacial stresses. Currently, approaches based on fracture mechanics are becoming increasingly established. Cohesive zone modeling bridges the gap between the stress- and energy-based approaches. While several cohesive zone analyses of bonded joints subjected to mode-II loading are available, limited studies have been conducted on cohesive zone modeling of interfacial stresses in plated beams. Moreover, the few available studies present complex formulations for which no closed-form solutions can be found. This paper presents an analytical cohesive zone model for the determination of interfacial stresses in plated beams. A first-order analysis is conducted, leading to closed-form solutions for the interfacial shear stresses. The mode-II cohesive law is taken as bilinear, as this simple shape is able to capture the essential properties of the interface. A closed-form expression for the debonding load is proposed, and the comparison between cohesive zone modeling and linear-elastic fracture mechanics predictions is discussed. Analytical predictions are also compared with results of a numerical finite element model where the interface is described with zero-thickness contact elements, using the node-to-segment strategy and incorporating decohesion and contact within a unified framework.  相似文献   

18.
论文建立了一个双层材料层合板受瞬态加热情况下的非傅里叶热传导分析模型,用向后差分法得到了温度场的数值解,并对该差分格式的稳定性进行了讨论.给出了温度场随导热时间、热扩散率、空间与时间步长之比以及弛豫时间的变化趋势.同时,通过已经求得的温度场,求得了层合板内的应力场,给出了层合板内的热应力随时间的变化.  相似文献   

19.
A theoretical model for geometrically nonlinear vibration analysis of thermo-piezoelectrically actuated circular plates made of functionally grade material (FGM) is presented based on Kirchhoff’s–Love hypothesis with von-Karman type geometrical large nonlinear deformations. The material properties of the FG core plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents. Dynamic equations and boundary conditions including thermal, elastic and piezoelectric couplings are formulated and solutions are derived. An exact series expansion method combined with perturbation approach is used to model the nonlinear thermo-electro-mechanical vibration behavior of the structure. Control of the FG plate’s nonlinear deflections and natural frequencies using high control voltages is studied and their nonlinear effects are evaluated. Numerical results for FG plates with various mixtures of ceramic and metal are presented in dimensionless forms. A parametric study is also undertaken to highlight the effects of the thermal environment, applied actuator voltage and material composition of the FG core plate on the nonlinear vibration characteristics of the composite structure.  相似文献   

20.
为研究黄土地区压力型锚索锚固机理,根据压力型锚索锚固段受力状态,基于三线型剪切-滑移模型,推导了注浆体与岩土体界面在弹性阶段所对应的剪应力及轴向应力分布的闭合解.根据相关压力型锚索锚固试验数据,采用推导的闭合解计算了不同张拉荷载作用下界面的剪应力分布,并与试验结果进行了对比.结果表明,各级张拉荷载作用下注浆体/岩土体界面剪应力的分布及其最大值与试验结果基本吻合,验证了本文提出解析模型的正确性与可靠性;压力型锚索锚固界面剪应力呈指数分布规律,在承压板附近剪应力分布集中且应力较大,随着离承压板距离的增大,剪应力逐渐减小;压力型锚索锚固界面剪应力峰值随外荷载增大而增大.研究结果可为压力型锚索的设计和计算提供一种理论参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号