首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new ferrocenecarboxylic acid–C60 composite (Fc–C60) has been synthesized by controlled potential electrolysis. A composite modified glassy carbon electrode has been prepared based on its good electrochemical activity. The modified electrode in 0.1 M NaClO4 solution shows a reversible oxidation wave at E1/2 = 0.32 V (vs. SCE) attributed to the oxidation of the ferrocene entity and a quasi-reversible reduction wave of C60 entity at E1/2 = ?0.54 V (vs. SCE). Electrocatalytic studies show that Fc–C60 at the modified electrode can mediate the reduction of hydrogen peroxide (H2O2), and a broad linear range from 1.2 μM to 21.9 mM for H2O2 were obtained with a determination limit of 2.5 × 10?7 M by amperometry.  相似文献   

2.
Using porous cuprous oxide (Cu2O) microcubes, a simple non-enzymatic amperometric sensor for the detection of H2O2 and glucose has been fabricated. Cyclic voltammetry (CV) revealed that porous Cu2O microcubes exhibited a direct electrocatalytic activity for the reduction of H2O2 in phosphate buffer solution and the oxidation of glucose in an alkaline medium. The non-enzymatic amperometric sensor used in the detection of H2O2 with detection limit of 1.5 × 10?6 M over wide linear detection ranges up to 1.5 mM and with a high sensitivity of 50.6 μA/mM. This non-enzymatic voltammetric sensor was further utilized in detection of glucose with a detection limit of 8.0 × 10?7 M, a linear detection range up to 500 μM and with a sensitivity of ?70.8 μA/mM.  相似文献   

3.
A robust and effective composite film based on gold nanoparticles (GNPs)/room temperature ionic liquid (RTIL)/multi-wall carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the RTIL-nanohybrid film modified GC electrode by electrostatic adsorption. Direct electrochemistry and electrocatalysis of Cyt c were investigated. The results suggested that Cyt c could be tightly adsorbed on the modified electrode. A pair of well-defined quasi-reversible redox peaks of Cyt c was obtained in 0.10 M, pH 7.0 phosphate buffer solution (PBS). RTIL-nanohybrid film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis currents increased linearly to the H2O2 concentration in a wide range of 5.0 × 10−5– 1.15 × 10−3 M. Based on the multilayer film, the third-generation biosensor could be constructed for the determination of H2O2.  相似文献   

4.
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione–AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at ?0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme FeIII/FeII couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system.  相似文献   

5.
An interesting mode of reactivity of MnO2 nanoparticles modified electrode in the presence of H2O2 is reported. The MnO2 nanoparticles modified electrodes show a bi-direction electrocatalytic ability toward the reduction/oxidation of H2O2. Based on this property, a choline biosensor was fabricated via a direct and facile electrochemical deposition of a biocomposite that was made of chitosan hydrogel, choline oxidase (ChOx) and MnO2 nanoparticles onto a glassy carbon (GC) electrode. The biocomposite is homogeneous and easily prepared and provides a shelter for the enzyme to retain its bioactivity. The results of square wave voltammetry showed that the electrocatalytic reduction currents increased linearly with the increase of choline chloride concentration in the range of 1.0 × 10−5 –2.1 × 10−3 M and no obvious interference from ascorbic acid and uric acid was observed. Good reproducibility and stability were obtained. A possible reaction mechanism was proposed.  相似文献   

6.
This work reports on a novel chitosan–hematite nanotubes composite film on a gold foil by a simple one-step electrodeposition method. The hybrid chitosan–hematite nanotubes (Chi–HeNTs) film exhibits strong electrocatalytic reduction activity for H2O2. Interestingly, two electrocatalytic reduction peaks are observed at −0.24 and −0.56 V (vs SCE), respectively, one controlled by surface wave and the other controlled by diffusion process. The Chi–HeNTs/Au electrode shows a linear response to H2O2 concentration ranging from 1 × 10−6 to 1.6 × 10−5 mol L−1 with a detection limit of 5 × 10−8 mol L−1 and a sensitivity as high as 1859 μA μM−1 cm−2.  相似文献   

7.
A novel three-dimensional (3D) electrochemical sensor was developed for highly sensitive detection of hydrogen peroxide (H2O2). Monolithic and macroporous graphene foam grown by chemical vapor deposition (CVD) served as the electrode scaffold. Using in-situ polymerized polydopamine as the linker, the 3D electrode was functionalized with thionine molecules which can efficiently mediate the reduction of H2O2 at close proximity to the electrode surface. Such stable non-enzymatic sensor is able to detect H2O2 with a wide linear range (0.4 to 660 μM), high sensitivity (169.7 μA mM 1), low detection limit (80 nM), and fast response (reaching 95% of the steady current within 3 s). Furthermore, this sensor was used for real-time detection of dynamic release of H2O2 from live cancer cells in response to a pro-inflammatory stimulant.  相似文献   

8.
We report here the enhanced sensing characteristics to H2 for a potentiometric sensor using an yttria-stabilized zirconia (YSZ) solid electrolyte and a ZnO(+ 84 wt.% Ta2O5) sensing electrode (SE) after aging at 500 °C. The emf response toward 400 ppm H2 was found to gradually increase up to − 800 mV after 40 days operation (aging) and was stabilized at this value until the 90th day. The aged and stabilized sensor exhibited highly sensitive response to H2, with minor responses toward other examined gases such as NOx and HCs. The 90% response time toward 100 ppm H2 was approximately 70 s. The H2 sensitivity of the stabilized sensor was hardly affected by changes in water vapor as well as O2 concentration, with repeatable and reproducible responses to H2.  相似文献   

9.
In this paper, we discuss the synthesis and electrochemical properties of a new material based on iron oxide nanoparticles stabilized with poly(diallyldimethylammonium chloride) (PDAC); this material can be used as a biomimetic cathode material for the reduction of H2O2 in biofuel cells. A metastable phase of iron oxide and iron hydroxide nanoparticles (PDAC–FeOOH/Fe2O3-NPs) was synthesized through a single procedure. On the basis of the Stokes–Einstein equation, colloidal particles (diameter: 20 nm) diffused at a considerably slow rate (D = 0.9 × 10? 11 m s? 1) as compared to conventional molecular redox systems. The quasi-reversible electrochemical process was attributed to the oxidation and reduction of Fe3+/Fe2+ from PDAC–FeOOH/Fe2O3-NPs; in a manner similar to redox enzymes, it acted as a pseudo-prosthetic group. Further, PDAC–FeOOH/Fe2O3-NPs was observed to have high electrocatalytic activity for H2O2 reduction along with a significant overpotential shift, ΔE = 0.68 V from ? 0.29 to 0.39 V, in the presence and absence of PDAC–FeOOH/Fe2O3-NPs. The abovementioned iron oxide nanoparticles are very promising as candidates for further research on biomimetic biofuel cells, suggesting two applications: the preparation of modified electrodes for direct use as cathodes and use as a supporting electrolyte together with H2O2.  相似文献   

10.
The potentiometric response characteristics of zinc ion selective PVC-based membrane electrode employing 1,12,14-triaza-5,8-dioxo-3(4),9(10)-dibenzoyl-1,12,14-triene as an inophore was investigated. The proposed electrode exhibits a Nernstian behavior with a slope of 29.2 ± 0.4 mV per decade with a working concentration range of 1.3 × 10?7–1.0 × 10?1 mol L?1 and a detection limit of 1.0 × 10?8 mol L?1. The membrane having the composition as TDODBCPT:O-NPOE:PVC:OA; 7:57:30:6 wt.% exhibits the best results. It has a fast response time of 7 s and can be used for at least 100 days without any considerable divergence in potential. The proposed electrode show good discrimination of Zn2+ ion from diverse ions. The potential response remains constant over a pH range of 3.5–9.2. The electrode found well work under laboratory conditions. The proposed sensor directly used for determination of zinc ions in human hair sample, wastewater and an indicator electrode with EDTA titration.  相似文献   

11.
Dissociative electron attachment to SO2, NO2, NF3 and H2O2 is studied in terms of the kinetic energies of the dominant fragment ions. The O? data from SO2 show that the two major resonances at 4.6 and 7.2 eV respectively have the same dissociation limit. Similarly, the resonances at 1.8 and 3.5 eV in the O? channel in NO2 appear to have same dissociation limit of NO (X 2Π) + O?, while the resonance at 8.5 eV appears to dissociate to give NO (a 4Πi) along with O?. We find considerable internal excitation of the neutral fragments in all these cases along with that of NF3, whereas the negative ion resonance in H2O2 appears to fragment almost like a diatomic system with very little internal excitation of the OH and OH? fragments.  相似文献   

12.
In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H2O2. Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl4 and PtBr2. Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10?3 to 0.56 mM and 2.0 × 10?3 to 0.66 mM, respectively. The detection limits were 7.5 × 10?4 mM for XO/Au/PVF/Pt and 6.0 × 10?4 mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated.  相似文献   

13.
4-Amino-2,2,6,6-tetramethyl-1-piperridine N-oxyl (4-amino-TEMPO), an electroactive nitroxide radical, was attached to the surface of graphene oxide (GO) and electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode by a simple, rapid and green electrografting method. The electroactive interfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). The calculated surface coverage for 4-amino-TEMPO is up to 1.55 × 10 9 mol·cm 2. The modified electroactive interface exhibited excellent electrocatalytic activity towards the electro-oxidation of reduced glutathione (GSH) and hydrogen peroxide (H2O2).  相似文献   

14.
Poly (neutral red) nanowires (PNRNWs) have been synthesized for the first time by the method of cyclic voltammetric electrodeposition using porous anodic aluminum oxide (AAO) template and were examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, horseradish peroxidase (HRP) was encapsulated in situ in PNRNWs (denoted as PNRNWs–HRP) by electrochemical copolymerization for potential biosensor applications. The PNRNWs showed excellent efficiency of electron transfer between the HRP and the glassy carbon (GC) electrode for the reduction of H2O2 and the PNRNWs–HRP modified GC electrode showed to be excellent amperometric sensors for H2O2 at −0.1 V with a linear response range of 1 μM to 8 mM with a correlation coefficient of 0.996. The detection limit (S/N = 3) and the response time were determined to be 1 μM and <5 s and the high sensitivity is up to 318 μA mM−1 cm−2.  相似文献   

15.
A VO2 · 0.43H2O powder with a flaky particle morphology was synthesized via a hydrothermal reduction method. It was characterized by scanning electron microscopy, electron energy loss spectroscopy, and thermogravimetric analysis. As an electrode material for rechargeable lithium batteries, it was used both as a cathode versus lithium anode and as an anode versus LiCoO2, LiFePO4 or LiNi0.5Mn1.5O4 cathode. The VO2 · 0.43H2O electrode exhibits an extraordinary superiority with high capacity (160 mAh g?1), high energy efficiency (95%), excellent cyclability (142.5 mAh g?1 after 500 cycles) and rate capability (100 mAh g?1 at 10 C-rate).  相似文献   

16.
In this work, we have prepared nano-material modified carbon paste electrode (CPE) for the sensing of an antidepressant, buzepide methiodide (BZP) by incorporating TiO2 nanoparticles in carbon paste matrix. Electrochemical studies indicated that the TiO2 nanoparticles efficiently increased the electron transfer kinetics between drug and the electrode. Compared with the nonmodified CPE, the TiO2-modified CPE greatly enhances the oxidation signal of BZP with negative shift in peak potential. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for the determination of BZP. Under the optimized conditions, the oxidation peak current of BZP is found to be proportional to its concentration in the range of 5 × 10−8 to 5 × 10−5 M with a detection limit of 8.2 × 10−9 M. Finally, this sensing method was successfully applied for the determination of BZP in human blood serum and urine samples with good recoveries.  相似文献   

17.
A new detection technique called the fast Fourier transform square-wave voltammetry (FFT-SWV) is based on the measurements of electrode admittance as a function of potential. The response of the detector (microelectrode) is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve better sensitivity. The response is generated by a redox processes. The redox property of L-dopa was used for determination of it in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for L-dopa determination was at 0.05 mol l?1 acetate buffer pH 7.0. Synthesized dysprosium nanowires make more effective surface like nanotubes [1], [2], [3], [4] so they are good candidates for using as a modifier for electrochemical reactions. The drug presented one irreversible oxidation peaks at 360 mV versus Ag/AgCl by modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential about 80 mV.Furthermore, signal-to-noise ratio has significantly increased by application of discrete fast Fourier transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensitivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, CDL of 4.0 × 10?9 M and an LOQ of 7.0 × 10?9 M were found for determination for L-dopa. A good recovery was obtained for assay spiked urine samples and a good quantification of L-dopa was achieved in a commercial formulation.  相似文献   

18.
A B2O3-doped SnO2 thin film was prepared by a novel experimental procedure combining the electrodeposition and the hydrothermal treatment, and its structure and electrochemical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, energy dispersive X-ray (EDX) spectroscopy and galvanostatic charge–discharge tests. It was found that the as-prepared modified SnO2 film shows a porous network structure with large specific surface area and high crystallinity. The results of electrochemical tests showed that the modified SnO2 electrode presents the largest reversible capacity of 676 mAh g?1 at the fourth cycle, close to the theoretical capacity of SnO2 (790 mAh g?1); and it still delivers a reversible Li storage capacity of 524 mAh g?1 after 50 cycles. The reasons that the modified SnO2 film electrode shows excellent electrochemical properties were also discussed.  相似文献   

19.
This paper presents the optimization of instrumental and solution parameters for determination of tamoxifen in urine and plasma and formulation by fast Fourier transform square wave voltammetry (SWV) using a gold microelectrode in flow-injection system. The samples are subjected by the same buffer solution and are injected in the flow-injection apparatus. By applying a novel square wave voltammetry method to perform as a sensitive method the voltamograms are recorded. The method used for determination of tamoxifen by measuring the changes in admittance voltammogram of a gold ultramicroelectrode (in 0.05 mol L?1 H3PO4 solution) caused by adsorption of the tamoxifen on the electrode surface. The best sensitivity was achieved using a frequency of 600 Hz and a medium composed of 0.05 mol L?1 phosphate buffers at pH 2.0. The best performance was obtained with the pH value of 2, pulse amplitude 25 mV, frequency 600 Hz, accumulation potential of ?100 mV and accumulation time of 0.5 s. Furthermore, signal-to-noise ratio has significantly increased by application of discrete fast Fourier transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. Calibration plots are given for solutions containing 1.0 × 10?11 to 3.0 × 10?6 mol L?1 of tamoxifen. The detection limit is calculated to be 3.0 × 10?12 mol L?1 (~2 pg mL?1). The relative standard deviation at concentration 2.0 × 10?8 M is 6.1% for five reported measurements.  相似文献   

20.
The behavior of a modified carbon platinum electrode (Pt) for lead(II) determination by square wave voltammetry (SWV) was studied. The modified electrode is obtained by electrodeposition of hydroxyapatite (HAP) on the surface of a bare platinum electrode. The new electrode (HAP/Pt) revealed interesting electroanalytical detection of lead(II) based on the adsorption of this metal onto hydroxyapatite under open circuit conditions. After optimization of the experimental and voltammetric conditions, the best voltammetric responses-current intensity and voltammetric profile were obtained in 0.2 mol L?1 KNO3 with: 30 min accumulation time, 5 mV pulse amplitude and 1 mV s?1 scan rate. The observed detection (DL, 3σ) and quantification (DL, 10σ) limits in pure water were 2.01 × 10?8 and 6.7 × 10?7 mol L?1, respectively. The reproducibility of the proposed method was determined from five different measurements in a solution containing 2.2 × 10?6 mol L?1 lead(II) with a coefficients of variation of 2.08%.The electrochemical of hydroxyapatite at platinum surfaces was characterized, after calcinations 900 °C, by X-ray diffraction, infrared spectroscopy, chemical and electrochemical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号