首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical DNA sensor has been fabricated by immobilizing thiolated single stranded oligonucleotide (ssDNA) probe onto gold (Au) coated glass electrode for meningitis detection using hybridization with complementary DNA (CtrA) in presence of methylene blue (MB). These electrodes (ssDNA/Au and dsDNA/Au) have been characterized using atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) technique. The DNA/Au electrode can detect the complementary DNA in the range of 7–42 ng/μl in 5 min (hybridization) with response time 60 s and electrode is stable for about 4 months when stored at 4 °C. The sensitivity of dsDNA/Au electrode is 115.8 μA/ng with 0.917 regression coefficient (R).  相似文献   

2.
An ultra-sensitive and highly selective electrochemical label-free aptasensor is proposed for the quantitation of Hg2 + based on the hybridization/dehybridization of double-stranded DNA (dsDNA) on a gold electrode. Thiol-substituted single-stranded DNA (ssDNA) is self-assembled on the gold electrode surface through the SAu interaction. The hybridization of ssDNA with complementary DNA (cDNA) and the consequences of dehybridization in the presence of mercury ions are followed through differential pulse voltammetry (DPV) responses using a [Fe(CN)6]3 −/4  redox probe. The formation of a thymine–Hg2 +–thymine (T–Hg2 +–T) complex is the key to producing a highly selective and sensitive aptasensor for Hg2 + determination. Specifically, the present electrochemical aptasensor is able to quantify Hg2 + ions in concentrations from 5 zeptomolar (zM) to 55 picomolar (pM) with a limit of detection of 0.6 zM, close to the dream of single atom detection, without requiring a complicated procedure or expensive materials.  相似文献   

3.
In this report we demonstrate an approach for the electrochemical detection of four sequences from maize and genetically modified (GM) maize by means of square-wave voltammetry (SWV). After multiplexed labeling with osmium tetroxide bipyridine ([OsO4(bipy)]), the target oligonucleotides are hybridized with a complementary DNA capture probe immobilized on gold electrodes. The multiplexed labeling was performed by mixing the four target strands with the respective oligonucleotides 80% homologous to the central target recognition sequences in order to protect the latter from binding of [OsO4(bipy)] to its thymine or cytosine residues. All components were added to the same solution. No significant decreases in SWV hybridization signals were observed after such multiplexed labeling of up to four target strands in the same reaction batch. Obtained voltammetric signals were significantly higher at 50 °C compared to 25 °C hybridization temperature and very low response was observed for non-complementary strands. Multiplexed labeling with osmium tetroxide bipyridine holds great promise for the development of simple and effective voltammetric detection protocols for GM organisms.  相似文献   

4.
The electrochemical reduction of molecular oxygen (O2) has been performed at gold electrodes modified with a submonolayer of a self-assembly (sub-SAM/Au) of a thiol compound (typically cysteine (CYST)) in O2-saturated 0.5 M KOH. At bare gold electrode O2 reduction reaction proceeds irreversibly, while this reaction is totally hindered at gold electrodes with a compact structure of CYST over its surface. The partial reductive desorption of the compact CYST monolayer was achieved by controlling the potential of the CYST/Au electrode, leading to the formation of a submonolayer coverage of the thiol compound over the Au electrode surface (sub-SAM/Au), at which the CYST molecules selectively block the Au(1 0 0) and Au(1 1 0) fractions (the so-called rough domains) of the polycrystalline Au while the Au(1 1 1) component (the so-called smooth domains) remains bare (i.e., uncovered with CYST). This sub-SAM/Au electrode extraordinarily exhibits a quasi-reversible two-electron reduction of molecular oxygen (O2) in alkaline medium with a peak separation (ΔEp) between the cathodic and anodic peak potentials (Epc,Epa) of about 60 mV. The ratio of the anodic current to the cathodic one is close to unity. The formal potential (Eo) of this reaction is found to equal −150 mV vs. Ag/AgCl/KCl(sat.).  相似文献   

5.
In this study, gold nanoparticles (AuNPs) were green synthesized using plant extract. The obtained nanoparticles (Au NPs) were characterized by advanced physical and chemical techniques like TEM, FTIR, UV–vis, SEM, XRD and EDX. SEM image displayed the quasi-spherical shaped nanoparticles of mean diameter 20–50 nm. All the particles were of uniform shape and texture. From the XRD pattern, four distinct diffraction peaks at 38.2°, 44.2°, 64.7° and 77.4° are indexed as (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes of fcc metallic gold. The in vitro cytotoxic and anti-gastric carcinoma effects of biologically synthesized Au NPs against cancer cell lines were assessed. The IC50 of the Au NPs were 192, 149, 76 and 85 µg/mL against NCI-N87, MKN45, GC1401 and GC1436 gastric cancer cell lines. The anti-gastric carcinoma properties of the Au NPs could significantly remove the cancer cell lines in a time and concentration-dependent manner. So, the findings of the recent research show that biologically synthesized Au NPs might be used to cure cancer.  相似文献   

6.
Triangular silver nanoplates (TSNPs) have been functionalised with probe strand miRNA that is complementary in part to the target nucleic acid, miR-132-3p, that is associated with neuroblastoma. These TSNPs were immobilised in gold microcavities via complementary miRNA hybridisation and can give plasmonic enhancement of the Raman response. Optimum enhancement can be achieved by using different excitation wavelengths and changing the distance between the nanoplate and the surface of the cavity. As silver is electrocatalytically active to the reduction of hydrogen peroxide, these probe-functionalised TSNPs can be used in a miRNA assay where a linear response was obtained for target concentrations from 100 fM to 1 μM target concentration, with a current generated of 100 μA.  相似文献   

7.
An electrochemical deposition method using high-frequency alternating current (AC) signal is reported here for the in situ synthesis and assembly of Au nanowires and nanoactuators on microelectrodes without using any masks or templates. High conductivity of 3.79 ± 0.14 × 107 Ω 1 m 1 is achieved on the Au nanowires assembled between electrodes. Au nanoactuators with expansion ratio of more than 500% can be fabricated at higher frequency. The actuators can act as claws to grab SiO2 nanoparticles in a water solution when driven by an alternating electric field. Disconnected nanowires and nanoparticles which self-aligned around the electrodes were also obtained at lower gold ion concentration, indicating a different current transfer mode in AC electrodeposition.  相似文献   

8.
We have investigated the Au–Si(1 1 1) interface as a function of the Au coverage by the core-level photoemission spectroscopy. With increasing the Au coverage, the spectral features in the Si 2p core-level changed remarkably and some fine structures in both Si 2p and Au 4f spectra were observed. Based on the curve fitting analysis, the Si 2p and Au 4f spectra at more than 20 Å Au coverage were decomposed into three chemically different components, respectively. The assignments of their components were performed. In addition, we have compared these results for the Au–Si(1 1 1) interface with our previous study for the Au–Si(1 0 0) interface. It was found that the electronic structures for the Au–Si(1 1 1) interface is essentially identical to those of the Au–Si(1 0 0) interface except at the initial Au deposition.  相似文献   

9.
Gold nanoparticles have been prepared by two methods: chemical (ex-situ, Au/C) by two phase protocol, and electrochemical (in-situ, Au/Pani) by electroreduction of gold ions on a polyaniline film and compared as anode catalysts in a glucose microfluidic fuel cell. In this paper the structural characteristics and electrocatalytic properties were investigated by X-ray diffraction and electrochemical measurements. The catalytic behavior of both anodes was tested in a microfluidic fuel cell with a reference electrode incorporated, by means of linear sweep voltammetry (LSV), showing a cathodic shift in the glucose oxidation peak for Au/Pani. Results show a higher power density (0.5 mW cm? 2) for Au/C anode compared with an already reported value, where a glucose microfluidic fuel cell was used in similar conditions.  相似文献   

10.
In this study, we demonstrated a novel fabrication method of three dimensional nanoporous gold thin film (NPGF) onto gold (Au) substrate using electrochemical deposition method. Scanning electron microscope (SEM) investigation reveals the formation of highly-ordered pores, approximately 30 nm in diameter and 150 nm thick. The NPGF-modified electrode shows a linear range (0.1–40 μM) for dopamine detection in the presence of ascorbic acid. The electrochemical measurements of mixtures of dopamine, ascorbic acid, and uric acid in human serum sample for real sample applications was also investigated based on differential pulse voltammetry (DPV) technique. These high sensitivity and selectivity features of the proposed NPGF biosensor offer great promise for real sample biosensor application.  相似文献   

11.
In this article, a new kind of hairpin DNA Electrochemical biosensor using nitroacridone as electrochemical indicator was first designed, and used to detect BCR/ABL fusion gene in Chronic Myelogenous Leukemia (CML). The results indicated that in pH 7.0 Tris–HCl buffer solution, the oxidation peak current was linear with the concentration of complementary strand in the range of 6.2 × 10−8–3.1 × 10−7 mol/l with a detection limit of 5.3 × 10−9 mol/l. This new hairpin DNA electrochemical biosensor demonstrates its excellent specificity for single-base mismatch and complementary (dsDNA) after hybridization, and this probe has been used for assay of PCR product of a real sample with satisfactory result.  相似文献   

12.
The object of this work is to develop a simple and selective method for efficient extraction of Au(III) ions in aqueous solution using a new solid-phase extraction sorbent. Polyethylenimine (PEI) ion-exchange polymer was coated on alumina in the presence of NaNO3. The method is based on sorption of Au3+ ions on 50 mg PEI/Al2O3. A solution of 0.5 M thiourea, then 1.0 M HCl effectively eluted the gold ion and then aspirated into flame atomic absorption spectroscopy (FAAS). The influence of flow rate of sample solution and eluent, the pH effect, eluent type and sorption capacity was investigated. The effects of various diverse ions for preconcentration and separation of the gold ion were investigated. Relative standard deviation of 4.0 μg mL−1 of gold was 1.46% (n = 10). The detection limit was 26.2 ng L−1 in original solution. The method has been applied successfully for the recovery of trace amount of Au(III) ions from water samples.  相似文献   

13.
Au/polyaniline (PANI)–poly(4-styrenesulfonate) (PSS) hybrid nanoarray is fabricated for biomolecular sensing in neutral aqueous solutions. Firstly, an array of one-dimensional Au nanorods (diameter = ca. 200 nm, length = ca. 3 μm) is formed by a template-electrodeposition method using a porous anodic alumina membrane, and then a thin PANI–PSS composite layer is electropolymerized on the surface of the Au nanorods. The resulting Au/PANI–PSS hybrid nanoarray exhibits a quasi-reversible redox electrochemical process at ca. +0.11 V and electrocatalytic oxidation of reduced β-nicotinamide adenine dinucleotide (NADH) is attained with a detection limit of 0.3 μM in a neutral solution.  相似文献   

14.
A glassy carbon electrode (GCE) modified with electrodeposited bimetallic Au–Pt nanoparticles (Au–PtNPs) was applied to sensitively detect As(III) by linear sweep anodic stripping voltammetry (LSASV). In 0.5 M aqueous H2SO4, atomic hydrogen and molecular hydrogen were easily electrogenerated at the Pt sites on Au–PtNPs/GCE, which can chemically reduce As(III) to As(0) and enhance the cathodic preconcentration of As(0) at both the Pt sites and the neighboring Au sites. Since the As(0)–Au affinity is weaker than the As(0)–Pt affinity, the preconcentrated As(0) can be rapidly oxidized on/near the surface Au sites of Au–PtNPs/GCE, yielding sharper and higher LSASV current peaks. Under optimum conditions (700 s preconcentration at − 0.1 V, 5 V s 1), the LSASV peak current for the As(0)–As(III) oxidation responded linearly to As(III) concentration from 0.005 to 3.0 μM with a limit of detection (LOD) of 3.7 nM (0.28 ppb) (S/N = 3), while that for the As(III)–As(V) oxidation was linear with As(III) concentration from 0.01 to 3.0 μM with a LOD of 6.0 nM (0.45 ppb) (S/N = 3). This method was applied for analysis of As(III) in real water samples.  相似文献   

15.
An Au thin film, which was sputter-deposited on an Al substrate, was potentiostatically anodized in oxalic acid. The Au film was first anodized and a spongelike nanoporous film grew down to the interface between Au and Al. Then, the Al was anodized and a very thin and fine nanoporous alumina film was formed underneath the nanoporous Au. Under the same anodization conditions, the current density for Al was ~ 40 μA cm 2, less than 1% of that for Au (~ 30 mA cm 2). The growth rates of the nanoporous films were ~ 0.7 nm/min for Al and 26 nm/min for Au, indicating that the growth rate of nanoporous alumina was less than 3% of that of nanoporous Au. Al is suitable as the substrate for preparing nanoporous Au films because the electrochemical reactions of both the electrolyte and the substrate are significantly suppressed when the nanopores penetrate Au and the electrolyte reaches the substrate.  相似文献   

16.
Amine-terminated polyamidoamine (PAMAM) dendrimers were immobilized on glassy carbon electrodes (GCEs) via electrochemical oxidation of the terminal amine groups of dendrimers. The electrochemical immobilization of dendrimers was confirmed by cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The immobilized dendrimer films were robust and behaved as charge-selective electrochemical gates for oppositely charged redox molecules. The immobilization approach was applied to assemble Au dendrimer-encapsulated nanoparticles (Au DENs, dia. 1.5 ± 0.3 nm) on GCEs, and the resulting Au DEN films showed electrocatalytic activity to hydrazine oxidation.  相似文献   

17.
Surface Enhanced Raman Scattering (SERS) can be used to detect specific DNA sequences by methods based on hybridisation of oligonucleotide functionalized nanoparticles to complementary DNA sequences. The problem, which has to be overcome to use this technique is that DNA is not strongly SERS active. This is due to the lack of a visible chromophore and presence of the highly negatively charged phosphate backbone, which prevents the electrostatic interaction with the metal surface necessary for the enhancement. To obtain SERS active DNA a label containing a surface seeking group, to allow adsorption of DNA on a metal surface, and a chromophore has to be attached to the DNA strand. Here we report the synthesis of three linkers containing a Raman tag [the following fluorophores were used for this purpose due to the fluorescence quenching ability of metallic nanoparticles: fluorescein, 6-aminofluorescein and tetramethylrhodamine (TAMRA)], surface complexing group (cyclic disulphide—thioctic acid) and a chemical functionality for attachment of DNA (carboxyl group). Each of the linkers also contain poly(ethylene glycol) (PEG) (3 mer), which reduces non-specific adsorption of molecules to the surface of the nanoparticles and provides colloidal stability. The synthesized linkers were used to functionalize gold citrate (18 and 50 nm), silver citrate (40 nm) and silver EDTA (35 nm) nanoparticles. All of the conjugates exhibit high stability, gave good SERS responses at laser excitation frequencies of 514 and 633 nm and could be conjugated to amino-modified oligonucleotides in the presence of the commonly used (N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride—EDC·HCl with N-hydroxysulfosuccinimide or 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride—DMT MM, which has not been used for bioconjugate preparation previously. This approach is less time consuming and less expensive than previously used protocols and does not require the formation of a mixed layer of oligonucleotides and Raman reporter on the metal surface. Additionally the presence of a reactive functionality within the linker structure makes it possible to conjugate the linker to other biomolecules of interest such as proteins.  相似文献   

18.
Ultratrace gold (Au) in geogas samples has been determined by means of laser excited atomic fluorescence spectrometry combined with graphite electrothermal atomization and time-gate technique. Gold atoms were excited from the ground state to the 6p2P3/2 state by a pulsed laser beam with a wavelength of 242.8 nm. Fluorescence photons with a wavelength of 312.3 nm were measured by a photon-counting unit. The time-gate technique was used to reduce the background radiation caused by the furnace. This method has proved to be highly sensitive with minimal background interference. Eighty-two geogas samples were analysed and the Au contents obtained were in the range of 0.002–0.182 ng l−1. The study of Au concentration of geogas in soil is of great interest in prospecting gold deposits.  相似文献   

19.
《Vibrational Spectroscopy》2011,55(2):133-136
Surface-enhanced Raman scattering (SERS) spectra of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was obtained by employing a bi-layer gold substrate, assembled by the reduction of Au(III) over gold-seeded nanoparticles immobilized on functionalized glass substrates. The SERS signal was linear with the logarithm of the solution concentrations between 1.0 × 10−7 mol L−1 and 1.0 × 10−3 mol L−1, indicating that the bi-layer gold substrate affords a significant dynamic range for SERS, providing an excellent analytical response within this concentration range, and revealing the high sensitivity of the gold surface towards such analyte. In addition, using the same gold substrate, a similar calibration curve was obtained for crystal-violet (CV), and it was possible to identify the concentration limit corresponding to the transition from the average SERS to the nonlinear SERS response.  相似文献   

20.
An electrochemical assay based on underpotential deposition (UPD) of metal has been utilised for the detection of Cd2+ using surface immobilized single-stranded DNA (ss-DNA). Since Cd2+ is able to undergo UPD on gold surface, this allows the opportunity to detect the amount of Cd2+ accumulated by immobilized ss-DNA directly via voltammetry. This is evidenced by the appearance of Cd2+/Cd0 electrochemistry at E0′ of 92 mV (rather than E0′ of −795 mV in bulk solution) at the ss-DNA modified gold electrode only after an exposure to Cd2+ solution. An association constant of 8.33 × 105 M−1 was determined from a Cd2+ calibration curve assuming a Langmuir-binding model for Cd2+ with surface-immobilized DNA. The high association constant is reflected in a low detectable concentration of 10 pM. The sensing layer can also be regenerated to metal-free status and can be reused up to 18 times without significant signal degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号