首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the Extended-Maugis-Dugdale (EMD) elastic theory, a single asperity capillary meniscus model considering asperity deformation due to both contact and adhesive forces was developed. Specifically included in the single asperity meniscus model was the solid surface interaction inside the contact area. Subsequently, the single asperity model was coupled with a statistical roughness surface model to develop an improved meniscus surface model applicable to a wide-range of humidity levels and adhesion parameter values. Simulations were performed using typical surfaces found in microelectromechanical systems (MEMS) and magnetic storage hard disk drives to examine the effects of surface roughness and relative humidity. It was found that smoother surfaces give rise to higher adhesive and pull-off forces, and at higher relative humidity levels, the capillary force governs the adhesive behavior. As the humidity decreases, the solid surface interaction increases and needs to be included in the total meniscus adhesion. By integrating the adhesive force-displacement curves, the adhesion energy per unit area was calculated for MEMS surfaces and favorably compared with reported experimental data.  相似文献   

2.
Direct nanopatterning of a number of high-melting-temperature molecules has been systematically investigated by dip-pen nanolithography (DPN). By tuning DPN experimental conditions, all of the high-melting-temperature molecules transported smoothly from the atomic force microscope (AFM) tip to the surface at room temperature without tip preheating. Water meniscus formation between the tip and substrate is found to play a critical role in patterning high-melting-temperature molecules. These results show that heating an AFM probe to a temperature above the ink's melting temperature is not a prerequisite for ink delivery, which extends the current "ink-substrate" combinations available to DPN users.  相似文献   

3.
Water condenses between an atomic force microscope (AFM) tip and a surface to form a nanoscale bridge that produces a significant adhesion force on the tip. As humidity increases, the water bridge always becomes wider but the adhesion force sometimes decreases. The authors show that the humidity dependence of the adhesion force is intimately related to the structural properties of the underlying water bridge. A wide bridge whose width does not vary much with tip-surface distance can increase its volume as distance is increased. In this case, the adhesion force decreases as humidity rises. Narrow bridges whose width decreases rapidly with increasing tip-surface distance give the opposite result. This connection between humidity dependence of the adhesion force and the structural susceptibility of the water bridge is illustrated by performing Monte Carlo simulations for AFM tips with various hydrophilicities.  相似文献   

4.
Environmental scanning electron microscopy was used to image meniscus formation between an AFM tip and a surface. At high relative humidity, 70%-99%, the meniscus formed is 100 to 1200 nm in height, orders of magnitude larger than predicted by the Kelvin equation using spherical geometry. The height of the meniscus also demonstrates hysteresis associated with increasing or decreasing relative humidity.  相似文献   

5.
《Progress in Surface Science》2006,81(2-3):112-140
This paper focuses on the nano-oxidation of a silicon surface using scanning probe microscopes in air ambient and in UHV. Special emphasis is put in air ambient on the preparation of the surfaces and on the oxidation mechanism. The characteristics of the patterned nanostructures are reviewed versus the parameters which govern the process (tip–surface voltage, tip speed, humidity) as well as the kinetics models of the oxidation process. The oxide patterns can act as robust masks for dry or wet etching. Fabrication of nanostructures is presented and allows to realize electronic nanodevices. In UHV, there is no direct nano-oxidation of the surface by the microscope tip. First the surface is hydrogenated, second a local hydrogen desorption is performed with the STM tip and finally the bare desorbed area is exposed to oxygen. The desorption process is analyzed versus tip–surface voltage and tunneling current. The oxidation of a desorbed area using molecular or atomic oxygen is actually difficult to achieve.  相似文献   

6.
扫描探针刻蚀技术可控构建牛血清白蛋白纳米结构   总被引:2,自引:0,他引:2  
利用Dip-pen纳米刻蚀技术(简称DPN技术)在云母基底上构建出形状、尺寸可控的牛血清白蛋白(BSA)纳米结构.考察了针尖接触基底时间及针尖下行距离对构建的牛血清白蛋白纳米结构的影响.较长的针尖-基底接触时间及较深的下行距离可以沉积更多的牛血清白蛋白分子,构建牛血清白蛋白纳米结构的形状除了与墨水分子的本身性能有关,还与墨水-基底的相互作用有关.这些形状及尺寸可控的蛋白质纳米结构可以作为模板,进行金属、半导体等其它材料的组装,有望用于制造光电纳米器件及生物纳米器件.  相似文献   

7.
The use of organofunctional silane chemistry is a flexible and general method for immobilizing biomolecules on silicon oxide surfaces, including fabricating DNA, small-molecule, and protein microarrays. The biggest hurdle in employing dip-pen nanolithography (DPN) for extending this general approach to the nanoscopic domain is the tendency of trialkoxy- and trichlorosilanes to rapidly polymerize due to hydrolysis reactions. The control of the local water concentration between the substrate surface and the scanning AFM tip is critical, both to the physical and chemical processes involved in DPN writing and to the ability to form well-defined thin layers of reactive silanes without extensive polymerization induced disorder. We found that we could control the degree of polymerization through careful choice of the alkoxysilane used as the "ink" for DPN and through control of the relative humidity during inking and writing with the coated AFM tip. As a proof-of-principle, we demonstrate that areas patterned with an alkoxysilane on glass with DPN are functional for subsequent immobilization of fluorescently labeled streptavidin via covalent attachment of biotin. This preliminary result sets the stage for the ability to capture proteins in their fully hydrated state from buffered solution, by molecular recognition onto previously written reactive nanoscopic regions on oxidized silicon and glass.  相似文献   

8.
This paper examines the effects of contact geometry on the pull-off (adhesion) force between a glass sphere (colloidal probe) and a silicon wafer in an environment with controlled relative humidity. An atomic force microscope is used to measure the pull-off force between the colloidal probe and the sample mounted at different tilt angles. The results show that the measured pull-off force is very sensitive to the tilt angle. Through the use of a newly developed direct scanning method, the exact contact geometry is determined for the zero-tilt angle case. The obtained digital image is then rotated to determine the contact geometry for the cases with other tilt angles. A detailed examination of the contact geometry, along with a magnitude analysis of the capillary force, suggests that the adhesion is most likely dominated by the capillary force from the meniscus formed between the probe and the sample. The strong dependence of the adhesion on the tilt angle may result from the change of meniscus dimensions associated with the probe-sample separation, which in turn is controlled by the highest peak on the probe sphere. Our observation emphasizes the combined role of microsurface shape near the contact and nanoroughness within the contact in determining the colloidal probe pull-off force and also microadhesion force in general.  相似文献   

9.

The formation of narrow-size distribution nanomaterials on surfaces in defined patterns is a research area of great interest due to its relevance in many applications such as catalysis, optoelectronics, and sensing devices. Patterning surface with nanostructures has been achieved by numerous techniques including electron-beam lithography, microcontact printing, constructive lithography, and different scanning probe microscopy techniques. Here, we present a different approach by which gold patterns are formed by an enzyme-catalyzed reaction followed by a surface-catalyzed process. Our study takes the advantage of scanning electrochemical microscopy (SECM) where the tip is modified with an enzyme and generates a reductant. The latter participates in an electroless deposition reaction, where AuCl4 is reduced catalyzed by a Pd surface. The result is local deposition of gold patterns made of nanoparticles as soon as the reductant generated by the tip, i.e., hydroquinone, approaches the Pd surface. Two enzymes were used: glucose oxidase (GOx) and alkaline phosphatase (ALP). The entire process was carefully studied and optimized, which enabled a good control of the patterns formed.

  相似文献   

10.
In this study we measured the adhesion forces between atomic force microscope (AFM) tips or particles attached to AFM cantilevers and different solid samples. Smooth and homogeneous surfaces such as mica, silicon wafers, or highly oriented pyrolytic graphite, and more rough and heterogeneous surfaces such as iron particles or patterns of TiO2 nanoparticles on silicon were used. In the first part, we addressed the well-known issue that AFM adhesion experiments show wide distributions of adhesion forces rather than a single value. Our experiments show that variations in adhesion forces comprise fast (i.e., from one force curve to the next) random fluctuations and slower fluctuations, which occur over tens or hundreds of consecutive measurements. Slow fluctuations are not likely to be the result of variations in external factors such as lateral position, temperature, humidity, and so forth because those were kept constant. Even if two solid bodies are brought into contact under precisely the same conditions (same place, load, direction, etc.) the result of such a measurement will often not be the same as that of the previous contact. The measurement itself will induce structural changes in the contact region, which can change the value for the next adhesion force measurement. In the second part, we studied the influence of humidity on the adhesion of nanocontacts. Humidity was adjusted relatively fast to minimize tip wear during one experiment. For hydrophobic surfaces, no signification change in adhesion force with humidity was observed. Adhesion force versus humidity curves recorded with hydrophilic surfaces either showed a maximum or continuously increased. We demonstrate that the results can be interpreted with simple continuum theory of the meniscus force. The meniscus force is calculated based on a model that includes surface roughness and takes into account different AFM tip (or particle) shapes by a two-sphere model. Experimental and theoretical results show that the precise contact geometry has a critical influence on the humidity dependence of the adhesion force. Changes in tip geometry on the sub-10-nm length scale can completely change adhesion force versus humidity curves. Our model can also explain the differences between earlier AFM studies, where different dependencies of the adhesion force on humidity were observed.  相似文献   

11.
不同氧化程度氧化石墨烯的制备及湿敏性能研究   总被引:2,自引:0,他引:2  
基于氧化石墨烯具有多种含氧官能团和极大的比表面积,研究了不同氧化程度氧化石墨烯的湿敏性能。采用改进的Hummers法制备不同氧化程度的氧化石墨,经过超声分散制备氧化石墨烯水相分散液后,制成氧化石墨烯薄膜湿敏元件。采用X射线衍射、原子力显微镜、红外光谱、拉曼光谱和X射线光电子能谱对实验样品的结构和谱学特性进行表征。结果表明:石墨经氧化后,底面间距增大为0.9 nm左右;随氧化剂用量的增加,氧化石墨中石墨的衍射峰逐渐消失,石墨相微晶尺寸逐渐减小,O/C原子比逐渐增大,氧化程度逐渐升高;氧化石墨烯在水相分散液中可达单层分散,单层氧化石墨烯厚度约为1.3 nm;氧化石墨烯表面接有-OH、C-O-C、C=O和COOH官能团,且官能团含量随氧化程度的升高而增大;氧化石墨烯薄膜元件在室温下对湿度的响应时间约3 s,灵敏度达99%;在11.3%-93.6%相对湿度范围内,元件的电阻随湿度升高显著减小,较高氧化程度的氧化石墨烯薄膜的电阻对数与相对湿度呈线性变化;氧化程度越高,元件灵敏度越高,响应时间越短。  相似文献   

12.
Under ambient conditions, a water meniscus generally forms between a nanoscale atomic force microscope tip and a hydrophilic surface. Using a lattice gas model for water and thermodynamic integration methods, we calculate the capillary force due to the water meniscus for both hydrophobic and hydrophilic tips at various humidities. As humidity rises, the pull-off force rapidly reaches a plateau value for a hydrophobic tip but monotonically increases for a weakly hydrophilic tip. For a strongly hydrophilic tip, the force increases at low humidities (<30%) and then decreases. We show that mean-field density functional theory reproduces the simulated pull-off force very well.  相似文献   

13.
Nanoprobe chemistry offers a promising approach for the construction of nanostructures consisting of organic molecules by employing the tip of a scanning probe microscope. In a previous report, we demonstrated that a nitroso-terminated surface on an organosilane self-assembled monolayer could be converted into an amino-terminated surface by applying such a nanoprobe electrochemical technique. This paper reports on surface-potential reversibility originating from a reversible chemical reaction between amino and nitroso groups. In addition, we demonstrate surface-potential memory based on this chemical reversibility. Amino-terminated SAMs were prepared from p-aminophenyl-trimethoxysilane through chemical vapor deposition. Surface potentials were acquired by Kelvin force microscopy. When scanning probe lithography was conducted with a gold tip at positive-bias voltages, the surface potential of the scanned area shifted dramatically in the negative direction. Scanning with negative-bias voltages led to positive shift in the surface potential of the scanned area. The surface potential could be recovered even after multiple scannings with positive and negative applied bias voltages. On the basis of this discovery, we also succeeded in demonstrating surface-potential memory via our nanoprobe electrochemical technique.  相似文献   

14.
Transport mechanisms involved in capillary condensation of water menisci in nanoscopic gaps between hydrophilic surfaces are investigated theoretically and experimentally by atomic force microscopy (AFM) measurements of capillary force. The measurements showed an instantaneous formation of a water meniscus by coalescence of the water layers adsorbed on the AFM tip and sample surfaces, followed by a time evolution of meniscus toward a stationary state corresponding to thermodynamic equilibrium. This dynamics of the water meniscus is indicated by time evolution of the meniscus force, which increases with the contact time toward its equilibrium value. Two water transport mechanisms competing in this meniscus dynamics are considered: (1) Knudsen diffusion and condensation of water molecules in the nanoscopic gap and (2) adsorption of water molecules on the surface region around the contact and flow of the surface water toward the meniscus. For the case of very hydrophilic surfaces, the dominant role of surface water transportation on the meniscus dynamics is supported by the results of the AFM measurements of capillary force of water menisci formed at sliding tip-sample contacts. These measurements revealed that fast movement of the contact impedes on the formation of menisci at thermodynamic equilibrium because the flow of the surface water is too slow to reach the moving meniscus.  相似文献   

15.
AFM诱导正十八硫醇在金基底上的选择性生长   总被引:1,自引:0,他引:1  
扫描探针显微镜(SCCnningPF0boMICCOSCOPy,SPM)由于其极高的空间分辨能力和高度的可控性,已成为纳米尺度加工的有力工具[‘·’j.自Schneir等[’j报道原子级平整金基底的制备和用装备An针尖的扫描隧道显微镜(ScanningTunnelingMicroscoPy,STM)在基底上制备金纳米点以来,有关在All和HOPG等基底上制备由金点构成的任意图案的方法及用导电原子力显微镜(AtomicForceM卜roscopy,AFM)在HOPG和St基底上制备金点阵的工作已有许多报道[‘·’‘.用导电AFM和TaPPingmodeAFM”,’‘对St进行直接氧化可在其表面加…  相似文献   

16.
The origin of adhesion in humid air is investigated by pull-off force measurements between nanoscale contacts using atomic force microscopes in controlled environments from ultrahigh vacuum through various humidity conditions to water. An equivalent work of adhesion (WOA) model with a simplified interface stress distribution is developed, combining the effects of screened van der Waals and meniscus forces, which describes adhesion in humid air and which self-consistently treats the contact stress and deformation. Although the pull-off force is found to vary significantly with humidity, the equivalent WOA is found to be invariant. Increasing humidity alters the nature of the surface adhesion from a compliant contact with a localized, intense meniscus force to a stiff contact with an extended, weak meniscus force.  相似文献   

17.
We study the capillary force in atomic force microscopy by using Monte Carlo simulations. Adopting a lattice gas model for water, we simulated water menisci that form between a rough silicon-nitride tip and a mica surface. Unlike its macroscopic counterpart, the water meniscus at the nanoscale gives rise to a capillary force that responds sensitively to the tip roughness. With only a slight change in tip shape, the pull-off force significantly changes its qualitative variation with humidity.  相似文献   

18.
This article describes the use of scanning catalytic probe lithography for nanofabrication of patterns on self-assembled monolayers (SAMs) of reactive adsorbates. Catalytic writing was carried out by scanning over bis(omega-tert-butyldimethyl-siloxyundecyl)disulfide SAMs using 2-mercapto-5-benzimidazole sulfonic acid-functionalized gold-coated AFM tips. The acidic tips induced local hydrolysis of the silyl ether moieties in the contacted areas, and thus patterned surfaces were created. Diffusion effects arising from the use of an ink were excluded in these type of experiments, and therefore structures with well-defined shapes and sizes were produced. The smallest lines drawn by this technique were about 25 nm wide, corresponding to the actual contact area of the tip. Lateral force microscopy studies performed on different SAMs helped to clarify the nature and cause of the friction contrasts observed by AFM. Dendritic wedges with thiol functions inserted into the catalytically written areas, thus enhancing the height contrast. The created patterns open possibilities to build 3D nanostructures.  相似文献   

19.
Dip-Pen Nanolithography (DPN) uses an AFM tip to deposit organic molecules through a meniscus onto an underlying substrate under ambient conditions. Thus far, the methodology has been developed exclusively for gold using alkyl or aryl thiols as inks. This study describes the first application of DPN to write organic patterns with sub-100 nm dimensions directly onto two different semiconductor surfaces: silicon and gallium arsenide. Using hexamethyldisilazane (HMDS) as the ink in the DPN procedure, we were able to utilize lateral force microscopy (LFM) images to differentiate between oxidized semiconductor surfaces and patterned areas with deposited monolayers of HMDS. The choice of the silazane ink is a critical component of the process since adsorbates such as trichlorosilanes are incompatible with the water meniscus and polymerize during ink deposition. This work provides insight into additional factors, such as temperature and adsorbate reactivity, that control the rate of the DPN process and paves the way for researchers to interface organic and biological structures generated via DPN with electronically important semiconductor substrates.  相似文献   

20.
漆酚醛胺聚合物多孔膜的制备   总被引:2,自引:0,他引:2  
以漆酚醛胺聚合物(UFDP)为成膜材料,利用水辅助自组装的固体基板展开法和水面展开法制备了漆酚醛胺聚合物多孔膜.研究了在静态(即不在聚合物表面吹扫氮气)高湿度环境下聚合物溶液浓度、环境湿度和固体基板等因素对多孔膜形貌的影响.结果表明,水面展开法更有利于形成单层的多孔膜而固体基板展开法得到的是多层的多孔膜.当UFDP聚合物浓度为6.0 mg/mL,环境相对湿度为90%时,用水面展开法制得的单层多孔膜的孔径分布较均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号