首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are studying dye-imidazole conjugates ("IMI dyes") as reagents for labeling phosphomonoesters such as nucleotides. Previously we have employed a BODIPY dye in our IMI reagents, and analyzed the labeled products by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) involving an argon ion laser. (The BODIPY fluorophore is a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene). Here we broaden the technology by preparing a DBD-IMI dye [DBD = 4-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole], and using a helium-cadmium laser. While DBD-IMI (IMI3) is about 50x more stable photolytically than a BODIPY-IMI dye (IMI2, a conjugate of a BODIPY dye with histamine, was tested), the detection limit for IMI2 (5.10(-11) M; S/N = 5, CE-LIF with an argon ion laser) is tenfold better than that for IMI3 (5.10(-10) M, S/N = 5, helium-cadmium laser). IMI3 conjugates of the four major DNA nucleotides were prepared and detected by CE-LIF.  相似文献   

2.
Two highly selective OFF-ON green emitting fluorescent thiol probes (1 and 2) with intense absorption in the visible spectrum (molar extinction coefficient ε is up to 73?800 M(-1) cm(-1) at 509 nm) based on dyads of BODIPY (as electron donor of the photo-induced electron transfer, i.e.PET) and 2,4-dinitrobenzenesulfonyl (DNBS) (as electron acceptor of the PET process) were devised. The single crystal structures of the two probes were determined. The distance between the electron donor (BODIPY fluorophore) and the electron acceptor (DNBS) of probe 2 is larger than that of probe 1, as a result the contrast ratio (or the PET efficiency) of probe 2 is smaller than that of probe 1. However, fluorescence OFF-ON switching effects were observed for both probe 1 and probe 2 in the presence of cysteine (the emission enhancement is 300-fold for probe 1 and 54-fold for probe 2). The fluorescence OFF-ON sensing mechanism is rationalized by DFT/TDDFT calculations. We demonstrated with DFT calculations that DNBS is ca. 0.76 eV more potent to accept electrons than the maleimide moiety. The probes were used for fluorescent imaging of cellular thiols.  相似文献   

3.
Based on a donor–acceptor framework, several conjugates have been designed and prepared in which an electron‐donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron‐acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower‐energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the YbIII emission in the near‐infrared (NIR) region with a quantum efficiency of up to 0.73 % and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two‐photon‐absorption cross‐sections that ranged from 1048–2226 GM and strong two‐photon‐induced NIR emission.  相似文献   

4.
Five different highly fluorescent boron‐dipyrromethene (BODIPY)‐tagged N‐heterocyclic carbene NHC–gold halide complexes were synthesized. The substitution of the halogeno ligand by 4‐substituted aryl thiolates leads to a decrease in the brightness of the complexes. This decrease depends on the electronic nature of the thiols, being most pronounced with highly electron‐rich thiols (4‐R=NMe2). The brightness of the gold thiolates also depends on the distance between the sulfur atom and the BODIPY moiety. The systematic variation of the electron density of [(NHC–bodipy)Au(SC6H4R)] (via different R groups) enables the systematic variation of the fluorescence brightness of an appended BODIPY fluorophore. Based on this and supported by DFT calculations, a photoinduced electron‐transfer quenching appears to be the dominant mechanism controlling the brightness of the appended BODIPY dye.  相似文献   

5.
Three series of heteroaryl chalcones, (E)-1-(2-pyridyl)-3-(X)prop-2-en-1-one (Ia-Ic), (E)-1-(2-thienyl)-3-(X)prop-2-en-1-one (IIa-IIc), and (E)-1-(2-furyl)-3-(X)prop-2-en-1-one (IIIa-IIIc), where X = 2,4,5-trimethoxyphenyl (for series a), X = 2,4,6-trimethoxyphenyl (for series b), and X = 3,4,5-trimethoxyphenyl (for series c) were synthesised using basic catalysed aldol condensation and characterised using 1H NMR and FT-IR spectroscopies. Compound IIa was also characterised by single crystal X-ray analysis. The absorption and fluorescence emission spectra of these compounds revealed that the absorption and fluorescence depended on the heterocycle rings and trimethoxysubstituted phenyl rings linked to the enone system. The position of methoxy groups substantially affected the fluorescent properties. Compounds Ia-IIIa containing the 2,4,5-trimethoxyphenyl moiety exhibited the red-shift phenomenon and strong emission fluorescence.  相似文献   

6.
报道了一种基于TiO2纳米管(TNT)阵列正面透光型光阳极的高效染料敏化太阳能电池.将TNTs在450°C烧结后能避免其有序结构在HF处理过程中被破坏,使膜内高速电子传输通道被保留,有利于染料敏化太阳能电池(DSSC)实现高速电荷传输.再用HF、TiCl4、HF和TiCl4混合等溶剂对TNTs进行处理,提高其表面粗糙度以吸附更多染料.染料吸附量的增加能提高光阳极在300-570 nm波段光子捕获效率,该波段是染料吸收光子的主要区域.然而,在染料吸收光子较弱的长波段区域(570-800 nm)光子捕获效率的增加主要源于光阳极光散射率的提高.光阳极光子捕获效率的提高使DSSC的内外量子效率在全波段(300-800 nm)均有所增加,从而使短路电流明显提高.从电化学阻抗数据可知,与电子传输性能密切相关的电化学参数如电荷传输电阻、界面电荷复合电阻、电容、电子寿命、电子扩散长度和电子收集效率等在含处理过的TNTs光阳极DSSC中均有所改善,从而提高电池光电转换效率.含HF和TiCl4混合溶剂处理TNTs光阳极的DSSC最高光电转换效率能达到7.30%,比未处理的DSSC(5.38%)提高35.69%.  相似文献   

7.
Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.  相似文献   

8.
The synthesis and characterization of a novel BODIPY dye functionalized with bis‐boronic acid groups to enable direct glucose sensing through selective recognition of carbohydrates is reported. Styrylation with boronic acid groups at the 3,5‐positions of the BODIPY core results in an extension of the π‐conjugation system of the dye and in a red‐shift of the main absorption band from 500 to 637 nm. The functionalized BODIPY dye was adsorbed on a glassy carbon electrode using the drop and dry method. Modified and bare electrodes were characterized using cyclic voltammetry and scanning electrochemical microscopy, while glucose detection was carried out by using differential pulse voltammetry and chronoamperometry. The detection limit was determined to be 1.42 μM. The dye was found to be selective and sensitive towards glucose, since likely interferences have only minor effects on the glucose detection.  相似文献   

9.
The high performances of dye‐sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron‐deficient diphenylquinoxaline moiety integrated in the π‐conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon‐to‐electron conversion efficiencies extends to the onset at the near‐infrared region due to strong internal charge‐transfer transition as well as the effect of electron‐deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their RuII counterparts. Detailed spectroscopic studies have revealed the dye structure–cell performance correlations, to allow future design of efficient light‐harvesting organic dyes.  相似文献   

10.
Designing and evaluating novel dye concepts is crucial for the development of the field of dye-sensitized solar cells (DSSCs). In our recent report, the novel concept of tethering the anti-aggregation additive chenodeoxycholic acid (CDCA) to dyes for DSSC was introduced. Based on the performance improvements seen for this modification, the aim of this study is to see if a simplified anti-aggregation unit could achieve similar results. The following study reports the synthesis and photovoltaic characterization of two novel dyes decorated with the steric ethyladamantyl moiety on the π-spacer, and on the triarylamine donor. This modification is demonstrated to be successful in increasing the photovoltages in devices employing copper-based electrolytes compared to the non-modified reference dye. The best photovoltaic performance is achieved by a device prepared with the adamantyl decorated donor dye and CDCA, this device achieves a power conversion efficiency of 6.1 % (Short-circuit current=8.3 mA cm−2, Open-circuit voltage=1054 mV, Fill factor=0.69). The improved photovoltaic performance seen for the adamantyl decorated donor demonstrate the potential of ethyladamantyl side chains as a tool to ensure surface protection of TiO2.  相似文献   

11.
The methanolic extract and its EtOAc-soluble fraction from the rhizomes of Zingiber cassumunar inhibited invasion of human fibrosarcoma HT 1080 cells. From the EtOAc-soluble fraction, eight new phenylbutanoids, cassumunols A-H, were isolated together with 30 known constituents. The structures of new phenylbutanoids were elucidated on the basis of chemical and physicochemical evidence. Principal constituents were examined the inhibitory effects on the invasion of HT 1080 cells. Among them, phlain I and III, (E)-1-(3,4-dimethoxyphenyl)buta-1,3-diene, (E)-1-(2,4,5-trimethoxyphenyl)buta-1,3-diene, and (-)-β-sesquiphellandrene showed anti-invasion effects. Interestingly, (E)-1-(2,4,5-trimethoxyphenyl)buta-1,3-diene [inhibition (%) 46.8 ± 7.2 (p<0.05) at 30 μM] significantly inhibited the invasion, and only a weak cytotoxic effect was observed.  相似文献   

12.
A novel distyryl-substituted boradiazaindacene (BODIPY) dye displays interesting properties as a sensitizer in DSSC systems, opening the way to further exploration of structure-efficiency correlation within this class of dyes.  相似文献   

13.
Two analogues (1, 2) of free cholesterol and one analogue (3) of the immunosuppressive sphingolipid FTY720 containing a boron dipyrromethene chromophore (BODIPY) were synthesized. The synthetic routes involved preparation of boron dipyrromethene moieties (5, 11), bearing a phenylethynyl group at different positions of the chromophore, and lipids (13, 20) bearing an azido group. The dye was tethered to the lipid via a 1,2,3-triazole in the linker by the click reaction. Analogues derived from 11 [in which an (E)-styrylethynyl moiety is bonded to C-5 of BODIPY] exhibited a marked red shift (approximately 70-80 nm) compared with those derived from 5 (in which a phenylethynyl moiety is bonded to C-8 of BODIPY).  相似文献   

14.
A set of linear and dissymmetric BODIPY‐bridged push–pull dyes are synthesized. The electron‐donating substituents are anisole and dialkylanilino groups. The strongly electron‐accepting moiety, a 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) group, is obtained by insertion of an electron‐rich ethyne into tetracyanoethylene. A nonlinear push–pull system is developed with a donor at the 5‐position of the BODIPY core and the acceptor at the 2‐position. All dyes are fully characterized and their electrochemical, linear and nonlinear optical properties are discussed. The linear optical properties of dialkylamino compounds show strong solvatochromic behavior and undergo drastic changes upon protonation. The strong push–pull systems are non‐fluorescent and the TCBD‐BODIPY dyes show diverse photochemistry and electrochemistry, with several reversible reduction waves for the tetracyanobutadiene moiety. The hyperpolarizability μβ of selected compounds is evaluated using the electric‐field‐induced second‐harmonic generation technique. Two of the TCBD‐BODIPY dyes show particularly high μβ (1.907 μm) values of 2050×10?48 and 5900×10?48 esu. In addition, one of these dyes shows a high NLO contrast upon protonation–deprotonation of the donor residue.  相似文献   

15.
Q Li  Y Guo  S Shao 《The Analyst》2012,137(19):4497-4501
A new fluorescent receptor for anions has been synthesized by the combination of BODIPY dye and indole moiety. The binding and sensing abilities of receptor toward various anions have been studied by absorption, emission and (1)H NMR titrations spectroscopies. Receptor could act as a highly selective "Off-On" fluorescent sensor for hydrogen sulfate anion in CH(3)CN solvent and CH(3)CN-H(2)O medium. The fluorescence response of receptor toward HSO(4)(-) in CH(3)CN solvent could be due to the suppressed PET (photo-induced electron transfer) process induced by the multiple hydrogen bonding interactions between receptor and HSO(4)(-). In CH(3)CN-H(2)O medium, the HSO(4)(-)-induced change is mainly the consequence of a simple protonation of the CH[double bond, length as m-dash]N- moiety of receptor , which inhibited the PET process and "turned on" the fluorescence of .  相似文献   

16.
The synthesis, structure, and photophysical properties of novel BODIPY–Fischer alkoxy‐, thio‐, and aminocarbene dyads are reported. The BODIPY chromophore is directly attached to the carbene ligand by an ethylenic spacer, thus forming donor–bridge–acceptor π‐extended systems. The extension of the π‐conjugation is decisive in the equilibrium geometries of the dyads and is clearly reflected in the corresponding absorption and emission spectra. Whereas the BODIPY fragment is mainly isolated in aminocarbene complexes, it is fully conjugated in alkoxycarbene derivatives. The former thus exhibit the characteristic photophysical properties of BODIPY units, whereas complete suppression of the BODIPY fluorescence emission is observed in the latter, as a direct consequence of the strong electron‐accepting character of the (CO)5M?C moiety. As the π‐acceptor character of the metal–carbene group can be modified, the electronic properties of the conjugated BODIPY can be tuned. Density functional calculations have been carried out to gain insight into the photophysical properties.  相似文献   

17.
Boron dipyrromethene (BODIPY) is known to have a high quantum yield (phi) of fluorescence in aqueous solution but has not been utilized much for biological applications, compared to fluorescein. We developed 8-(3,4-diaminophenyl)-2,6-bis(2-carboxyethyl)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (DAMBO-P(H)), based on the BODIPY chromophore, as a highly sensitive fluorescence probe for nitric oxide (NO). DAMBO-P(H) had a low phi value of 0.002, whereas its triazole derivative (DAMBO-P(H)-T), the product of the reaction of DAMBO-P(H) with NO, fluoresced strongly (phi = 0.74). The change of the fluorescence intensity was found to be controlled by an intramolecular photoinduced electron transfer (PeT) mechanism. The strategy for development of DAMBO-P(H) was as follows: (1) in order to design a highly sensitive probe of NO, the reactivity of o-phenylenediamine derivatives as NO-reactive moieties was examined using 4,5-diaminofluorescein (DAF-2, a widely used NO fluorescence probe), (2) in order to avoid pH-dependency of the fluorescence intensity, the PeT process was controlled by modulating the spectroscopic and electrochemical properties of BODIPY chromophores according to the Rehm-Weller equation based on measurement of excitation energies of chromophores, ground-state reduction potentials of PeT acceptors (BODIPYs), and calculation of the HOMO energy level of the PeT donor (o-phenylenediamine moiety) at the B3LYP/6-31G level, (3) in order to avoid quenching of fluorescence by stacking of the probes and to obtain probes suitable for biological applications, hydrophilic functional groups were introduced. This strategy should be applicable for the rational design of other novel and potentially useful bioimaging fluorescence probes.  相似文献   

18.
A bis‐branched [3]rotaxane, with two [2]rotaxane arms separated by an oligo(para‐phenylenevinylene) (OPV) fluorophore, was designed and investigated. Each [2]rotaxane arm employed a difluoroboradiaza‐s‐indacene (BODIPY) dye‐functionalized dibenzo[24]crown‐8 macrocycle interlocked onto a dibenzylammonium in the rod part. The chemical structure of the [3]rotaxane was confirmed and characterized by 1H and 13C NMR spectroscopy and high‐resolution ESI mass spectrometry. The photophysical properties of [3]rotaxane and its reference systems were investigated through UV/Vis absorption, fluorescence, and time‐resolved fluorescence spectroscopy. An efficient energy‐transfer process in [3]rotaxane occurred from the OPV donor to the BODIPY acceptor because of the large overlap between the absorption spectrum of the BODIPY moiety and the emission spectrum of the OPV fluorophore; this shows the important potential of this system for designing functional molecular systems.  相似文献   

19.
A tropolone group has been employed for the first time as an anchoring group for dye‐sensitized solar cells (DSSCs). The DSSC based on a porphyrin, YD2‐o‐C8T, with a tropolone moiety exhibited a power‐conversion efficiency of 7.7 %, which is only slightly lower than that observed for a reference porphyrin, YD2‐o‐C8 , with a conventional carboxylic group. More importantly, YD2‐o‐C8T was found to be superior to YD2‐o‐C8 with respect to DSSC durability and binding ability to TiO2. These results unambiguously demonstrate that tropolone is a highly promising dye‐anchoring group for DSSCs in terms of device durability as well as photovoltaic performance.  相似文献   

20.
A detailed study of the synthesis and photophysical properties of a new series of dipolar organic photosensitizers that feature a 1,3‐cyclohexadiene moiety integrated into the π‐conjugated structural backbone has been carried out. Dye‐sensitized solar cells (DSSCs) based on these structurally simple dyes have shown appreciable photo‐to‐electrical energy conversion efficiency, with the highest one up to 4.03 %. Solvent‐dependent fluorescence studies along with the observation of dual emission on dye 4 b and single emission on dyes 4 a and 32 suggest that dye 4 b possesses a highly polar emissive excited state located at a lower‐energy position than at the normal emissive excited state. A detailed photophysical investigation in conjunction with computational studies confirmed the twisted intramolecular charge‐transfer (TICT) state to be the lowest emissive excited state for dye 4 b in polar solvents. The relaxation from higher‐charge‐injection excited states to the lowest TICT state renders the back‐electron transfer process a forbidden one and significantly retards the charge recombination to boost the photocurrent. The electrochemical impedance under illumination and transient photovoltage decay studies showed smaller charge resistance and longer electron lifetime in 4 b ‐based DSSC compared to the DSSCs with reference dyes 4 a and 32 , which further illustrates the positive influence of the TICT state on the performance of DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号