首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Aromatic carbonyl compounds such as 10-methylacridone form the Lewis acid complexes including paramagnetic and redox active Lewis acids. The fluorescence energies of the Lewis acid complexes are well correlated with the O2*--Lewis acid complexes derived from the gzz-values of the ESR spectra of the superoxide anion-Lewis acid complexes, thus providing a quantitative measure of the Lewis acidity.  相似文献   

2.
The g values of ESR spectra of superoxide-metal ion complexes (O2(*-)-Mn+, n = 1, 2, 3) are determined in acetonitrile at 143 K. The binding energies (deltaE) of metal ions with O2*- have been evaluated from deviation of the gzz values from the free spin value. The deltaE values are well correlated with the catalytic reactivities of metal ions in electron transfer from cobalt(II) tetraphenylporphyrin to O2 and p-benzoquinone, which does not occur in the absence of metal ions under otherwise the same experimental conditions. The deltaE values can thereby be used as the first quantitative measure for Lewis acidity of metal ions in relation with the catalytic reactivities in electron transfer reactions.  相似文献   

3.
Rates of Diels-Alder cycloaddition of anthracenes with p-benzoquinone and its derivatives as well as rates of hydride-transfer reactions from 10-methyl-9,10-dihydroacridine to the same series of p-benzoquinones are accelerated significantly in the presence of metal ions in acetonitrile. An extensive comparison of the catalytic effects of metal ions in electron transfer from one-electron reductants (cobalt tetraphenylporphyrin and decamethylferrocene) to p-benzoquinones with those in the Diels-Alder reactions of the quinones as well as the hydride-transfer reactions has revealed that the catalysis of metal ions in each case is ascribed to the 1:1 and 1:2 complexes formed between the corresponding semiquinone radical anions and metal ions. The transient absorption and ESR spectra of the semiquinone radical anion-metal ion complexes are detected directly in the electron-transfer reduction of p-benzoquinone derivatives in the presence of metal ions. The catalytic reactivities of a variety of metal ions in each reaction are well correlated with the energy splitting values of pi(g) levels because of the complex formation between O(2)(.-) and M(n+), which are derived from the g(zz) values of the ESR spectra of the O(2)(.-)-M(n+) complex.  相似文献   

4.
The geometries and bond dissociation energies of the main group complexes X3B-NX3, X3B-PX3, X3Al-NX3, and X3Al-PX3 (X = H, Me, Cl) and the transition metal complexes (CO)5M-NX3 and (CO)5M-PX3 (M = Cr, Mo, W) have been calculated using gradient-corrected density functional theory at the BP86/TZ2P level. The nature of the donor-acceptor bonds was investigated with an energy decomposition analysis. It is found that the bond dissociation energy is not a good measure for the intrinsic strength of Lewis acidity and basicity because the preparation energies of the fragments may significantly change the trend of the bond strength. The interaction energies between the frozen fragments of the borane complexes are in most cases larger than the interaction energies of the alane complexes. The bond dissociation energy of the alane complexes is sometimes higher than that of the borane analogues because the energy for distorting the planar equilibrium geometry of BX3 to the pyramidal from in the complexes is higher than for AlX3. Inspection of the three energy terms, DeltaE(Pauli), DeltaE(orb), and DeltaE(elstat), shows that all three of them must be considered to understand the trends of the Lewis acid and base strength. The orbital term of the donor-acceptor bonds with the Lewis bases NCl3 and PCl3 have a higher pi character than the bonds of EH3 and EMe3, but NCl3 and PCl3 are weaker Lewis bases because the lone-pair orbital at the donor atoms N and P has a high percent s character. The calculated DeltaE(int) values suggest that the trends of the intrinsic Lewis bases' strengths in the main-group complexes with BX3 and AlX3 are NMe3 > NH3 > NCl3 and PMe3 > PH3 > PCl3. The transition metal complexes exhibit a somewhat different order with NH3 > NMe3 > NCl3 and PMe3 > PH3 > PCl3. The slightly weaker bonding of NMe3 than that of NH3 comes from stronger Pauli repulsion. The bond length does not always correlate with the bond dissociation energy, nor does it always correlate with the intrinsic interaction energy.  相似文献   

5.
A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state‐of‐the‐art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride‐ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid–fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent‐carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four‐coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches.  相似文献   

6.
Redox‐inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal–oxygen intermediates, such as metal–oxo and metal–peroxo complexes. The mechanisms of the oxidative C?H bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)–oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate‐determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3) by iron(III)–oxo complexes. All logarithms of the observed second‐order rate constants of Lewis acid‐promoted oxidative C?H bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)–oxo complexes exhibit remarkably unified correlations with the driving forces of proton‐coupled electron transfer (PCET) and metal ion‐coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal–oxo moiety has been confirmed for MnIV–oxo complexes. The enhancement of the electron‐transfer reactivity of metal–oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox‐inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)–peroxo complexes, resulting in acceleration of the electron‐transfer reduction but deceleration of the electron‐transfer oxidation. Such a control on the reactivity of metal–oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca2+ in the oxidation of water to dioxygen by the oxygen‐evolving complex in photosystem II.  相似文献   

7.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

8.
Lewis acids play an important role in synthetic chemistry. Using first-principle calculations on some newly designed molecules containing boron and organic heterocyclic superhalogen ligands, we show that the acid strength depends on the charge of the central atom as well as on the ligands attached to it. In particular, the strength of the Lewis acid increases with increasing electron withdrawing power of the ligand. With this insight, we highlight the importance of superhalogen-based ligands in the design of strong Lewis acids. Calculated fluoride ion affinity (FIA) values of B[C2BNO(CN)3]3 and B[C2BNS(CN)3]3 show that these are super Lewis acids.  相似文献   

9.
We report results from a computational study of the binding in complexes formed from one of the transition-metal ions Sc(+), Ti(2+), or V(3+), each of which has two valence electrons outside an argon core, and one of the second-row hydrides FH, OH(2), NH(3), BH(3), or BeH(2). The complexes that involve the electron-rich ligands FH, OH(2), and NH(3) have strong ion-dipole components to their binding. There are large stabilization energies for sigma-interactions that transfer charge from occupied lone-pair natural bond orbitals on the F, O, or N atom of the (idealized) Lewis structure into empty non-Lewis orbitals on the metal ions; these interactions effectively increase electron density in the bonding region between the metal ion and liganded atom, and the metal ions in these complexes act in the capacity of Lewis acids. The complexes formed from the electron-poor hydrides BH(3) and BeH(2) consistently incorporate bridging hydrogen atoms to support binding, and there are large stabilization energies for interactions that transfer charge from the Be-H or B-H bonds into the region between the metal ion and liganded atom. The metal ions in Sc(+)-BeH(2), Ti(2+)-BeH(2), Ti(2+)-BH(3), and V(3+)-BH(3) act in the capacity of Lewis acids, whereas the scandium ion in Sc(+)-BH(3) acts as a Lewis base.  相似文献   

10.
Lewis acid catalysis has attracted much attention in organic synthesis as it often affords access to unique reactivity and selectivity under mild conditions. Although various kinds of Lewis acids have been developed and applied in industry, these Lewis acids must be generally used under strictly anhydrous conditions, as the presence of even a small amount of water interferes with the reactions due to preferential reaction of the Lewis acids with water rather than the substrates. In contrast to this, rare earth and other metal complexes have been found to be water-compatible. Furthermore, Bi(OTf)(3)- and Ga(OTf)(3)-basic ligand complexes have also been found to be stable in water, and have been used as water-compatible Lewis acids. This application is particularly significant, as Bi(OTf)(3) and Ga(OTf)(3) themselves are unstable in the presence of water, but are stabilized by the basic ligands. This observation has led to the development of a new approach to Lewis acid catalysis in which Lewis acids that are generally unstable in the presence of water are rendered amenable to aqueous systems when combined with basic ligands. In particular, the use of chiral basic ligands leading to new types of water-compatible chiral Lewis acids may enable a wide range of asymmetric catalysis in aqueous media.  相似文献   

11.
The effect of several Lewis acids on the CBS catalyst (named after Corey, Bakshi and Shibata) was investigated in this study. While 2H NMR spectroscopic measurements served as gauge for the activation capability of the Lewis acids, in situ FT‐IR spectroscopy was employed to assess the catalytic activity of the Lewis acid oxazaborolidine complexes. A correlation was found between the Δδ(2H) values and rate constants kDA, which indicates a direct translation of Lewis acidity into reactivity of the Lewis acid–CBS complexes. Unexpectedly, a significant deviation was found for SnCl4 as Lewis acid. The SnCl4–CBS adduct was much more reactive than the Δδ(2H) values predicted and gave similar reaction rates to those observed for the prominent AlBr3–CBS adduct. To rationalize these results, quantum mechanical calculations were performed. The frontier molecular orbital approach was applied and a good correlation between the LUMO energies of the Lewis acid–CBS–naphthoquinone adducts and kDA could be found. For the SnCl4–CBS–naphthoquinone adduct an unusual distortion was observed leading to an enhanced Lewis acidity. Energy decomposition analysis with natural orbitals for chemical valence (EDA‐NOCV) calculations revealed the relevant interactions and activation mode of SnCl4 as Lewis acid in Diels–Alder reactions.  相似文献   

12.
The reaction of UH3 or U metal with triflic acid results in the formation of a mixture of species including U(OTf)4 and leads to the reproducible isolation of the mononuclear U(IV) hydroxo complex [U(OTf)3(OH)(py)4] (1) and the U(IV) dinuclear mu-oxo-complex [{U(OTf)2(py)3}2{mu-O}{mu-OTf}2] (2). The X-ray crystal structures of these complexes have been determined. Analytically pure complex 1 can be prepared in a 17-27% yield providing a good precursor for the synthesis and study of the reactivity of the hydroxo complexes with different coordination environments. Two practical synthetic methods for the preparation of Lewis base adducts of U(OTf)3 are described. Analytically pure [U(OTf)3(py)4] (4) was easily and reproducibly prepared (50-60% yield) by protonolysis of the amide U{N(SiMe3)2}3 with pyridinium triflate in pyridine. Salt metathesis of UI3(thf)4 with potassium triflate in acetonitrile resulted in the complete substitution of the iodide counterions by triflate producing the acetonitrile solvate [U(OTf)3(MeCN)3]n (3). The solid-state structure of 3 shows the formation of a unique U(III) coordination polymer in which the metal ions are connected by three triflates acting as bidentate bridging ligands to form a 1D chain.  相似文献   

13.
Reactions of some typical acid halides of carbonic and trithiocarbonic acids and of orthophosphoric and sulfuric acids with Lewis acids and Lewis bases are compared. Acylium, perfluoroacylium, thioacylium, and even sulfonylium ions are obtainable with Lewis acids. It is possible by conductivity measurements and by electronic and above all IR spectroscopic investigations to determine whether the 1:1 adducts of acid halides and Lewis compounds are acylium or sulfonylium salts or donor-acceptor complexes. In the reaction with Lewis bases, the halogen atom in the acid halide is replaced by the electron donor, generally with formation of nonpolar molecular compounds or complexes.  相似文献   

14.
Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s [M(Cp)(2)][OSO(2)C(8)F(17)](2)?nH(2)O?THF (M = Zr (2?a?3?H(2)O?THF), M = Ti (2?b?2?H(2)O?THF)) were synthesized by the reaction of [M(Cp)(2)]Cl(2) (M = Zr (1?a), M = Ti (1?b)) with nBuLi and C(8)F(17)SO(3)H (2?equiv) or with C(8)F(17)SO(3)Ag (2?equiv). The hydrate numbers (n) of these complexes were variable, changing from 0 to 4 depending on conditions. In contrast to well-known metallocene triflates, these complexes suffered no change in open air for a year. thermogravimetry-differential scanning calorimetry (TG-DSC) analysis showed that 2?a and 2?b were thermally stable at 300 and 180?°C, respectively. These complexes exhibited unusually high solubility in polar organic solvents. Conductivity measurement showed that the complexes (2?a and 2?b) were ionic dissociation in CH(3)CN solution. X-ray analysis result confirmed 2?a?3?H(2)O?THF was a cationic organometallic Lewis acid. UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2?a. Fluorescence spectra showed that the Lewis acidity of 2?a fell between those of Sc(3+) (λ(em)=474?nm) and Fe(3+) (λ(em)=478?nm). ESR spectra showed the Lewis acidity of 2?a (0.91?eV) was at the same level as that of Sc(3+) (1.00?eV) and Y(3+) (0.85?eV), while the Lewis acidity of 2?b (1.06?eV) was larger than that of Sc(3+) (1.00?eV) and Y(3+) (0.85?eV). They showed high catalytic ability in carbonyl-compound transformation reactions, such as the Mannich reaction, the Mukaiyama aldol reaction, allylation of aldehydes, the Friedel-Crafts acylation of alkyl aromatic ethers, and cyclotrimerization of ketones. Moreover, the complexes possessed good reusability. On account of their excellent catalytic efficiency, stability, and reusability, the complexes will find broad catalytic applications in organic synthesis.  相似文献   

15.
An efficient synthesis of a valuable intermediate of coenzyme Q(10) by microwave-assisted Lewis acidic ionic liquid (IL)-catalyzed Friedel-Crafts alkylation is reported. The acidity of six [Etpy]BF(4)-based ionic liquids was characterized by means of the FT-IR technique using acetonitrile as a molecular probe. The catalytic activities of these ionic liquids were correlated with their Lewis acidity. With increasing Lewis acid strength of the ionic liquids, their catalytic activity in the Friedel-Crafts reaction increased, except for [Etpy]BF(4)-AlCl(3). The effects of the reaction system, the molar fraction of Lewis acid in the Lewis acid ILs and heating techniques were also investigated. Among the six Lewis acid ionic liquids tested [Etpy]BF(4)-ZnCl(2) showed the best catalytic activity, with a yield of 89% after a very short reaction time (150 seconds). This procedure has the advantages of higher efficiency, better reusability of ILs, energy conservation and eco-friendliness. The method has practical value for preparation of CoQ(10) on an industrial scale.  相似文献   

16.
Given its earth abundance, silicon is ideal for constructing Lewis acids of use in catalysis or materials science. Neutral silanes were limited to moderate Lewis acidity, until halogenated catecholato ligands provoked a significant boost. However, catalytic applications of bis(perhalocatecholato)silanes were suffering from very poor solubility and unknown deactivation pathways. In this work, the novel per(trifluoromethyl)catechol, H2catCF3, and adducts of its silicon complex Si(catCF3)2 ( 1 ) are described. According to the computed fluoride ion affinity, 1 ranks among the strongest neutral Lewis acids currently accessible in the condensed phase. The improved robustness and affinity of 1 enable deoxygenations of aldehydes, ketones, amides, or phosphine oxides, and a carbonyl-olefin metathesis. All those transformations have never been catalyzed by a neutral silane. Attempts to obtain donor-free 1 attest to the extreme Lewis acidity by stabilizing adducts with even the weakest donors, such as benzophenone or hexaethyl disiloxane.  相似文献   

17.
Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) methods were used to study open-chain piperazine-containing ligands (L) and their complexes formed with transition-metal salts. ESI and MALDI measurements were performed with a Fourier transform ion cyclotron resonance (FT-ICR) and a time-of-flight (TOF) mass spectrometer, respectively. Only singly charged complexes, between one ligand and one or several metal ions, were formed in the ESI measurements. Because the net charge was always one, one or several counterions were attached to the complex. Under ESI conditions, the complexes formed between the ligands and metal (Co, Ni, Cu, and Cd) salts were [L + M + X](+), [L + H + M + X(2)](+) and [L + M(2) + X(3)](+) (M = metal ion, X = counterion). In collision induced dissociation reactions the [L + H + M + X(2)](+) complexes easily eliminated one proton and one counterion. Fragmentation pathways were more dependent on the metal ion than the ligand, and elimination of the second counterion occurred with one proton from copper and nickel complexes and with one proton and one hydrogen from cobalt complexes. Differences in the fragmentation of the complexes could be due to electronic configuration of the metal ion. In the MALDI measurements the ratio between the [L + H](+) and [L - H](+) ions varied with the matrix. Fragmentation of the ligands through elimination of 2-methylpyridine end groups occurred with the aromatic matrices containing carboxylic acid and hydroxyl substituents. Ionization of the complexes was not successful with MALDI as the matrix molecules were also attached to the complexes.  相似文献   

18.
A ferrocene-quinone dyad (Fc-Q) with a rigid amide spacer and Fc-(Me)Q dyad, in which the amide proton acting as a hydrogen-bonding acceptor is replaced by the methyl group, are employed to examine the effects of hydrogen bonding on both the thermal and the photoinduced electron-transfer reactions. The hydrogen bonding of the semiquinone radical anion with the amide proton in Fc-Q(.-) produced by the electron-transfer reduction of Fc-Q is indicated by the significant positive shift of the one-electron reduction potential of Fc-Q. The hyperfine coupling constants of Fc-Q(.-) also indicate the existence of hydrogen bonding, agreeing with those predicted by the density functional calculation. The hydrogen-bonding dynamics in the photoinduced electron transfer from the ferrocene (Fc) to the quinone moiety (Q) in Fc-Q have been successfully detected in the femtosecond laser flash photolysis experiments. Thermal intramolecular electron transfer from Fc to Q in Fc-Q and Fc-(Me)Q also occurs efficiently in the presence of metal ions in acetonitrile at 298 K. The hydrogen bond formed between the semiquinone radical anion and the amide proton in Fc-Q results in remarkable acceleration of the rate of metal ion-promoted electron transfer as compared to the rate of Fc-(Me)Q in which hydrogen bonding is prohibited. The metal ion-promoted electron-transfer rates are well correlated with the binding energies of superoxide ion-metal ion complexes, which are derived from the g(zz) values of the ESR spectra.  相似文献   

19.
A number of zerovalent ruthenium tri‐ and tetracarbonyl complexes of the form [Ru(CO)5?nLn] (n=1, 2) with neutral phosphine or N‐heterocyclic carbene donor ligands have been treated with the Lewis acids GaCl3 and Ag+ to form a range of metal‐only Lewis pairs (MOLPs). The spectroscopic and structural parameters of the adducts are compared to each other and to related iron carbonyl based MOLPs. The Lewis basicity of the original Ru0 complexes is gauged by transfer experiments, as well as through the degree of pyramidization of the bound GaCl3 units and the Ru?M bond lengths. The work shows the benefits of the MOLP concept as one of the few direct experimental gauges of metal basicity, and one that can allow comparisons between metal complexes with different metal centers and ligand sets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号