首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of copper(I) chloride with R2Si(NLiPh)2 (R = Me, Ph) in thf led to the formation of the octanuclear cluster compounds [Cu8{(R2Si(NPh)2}4] [R = Me ( 1 ), Ph ( 2 ).] Compound 1 crystallizes in the tetragonal space group P4/n, with a = 1505.41(5) and c = 1911.32(7) pm. The X‐ray crystal structure determination revealed a cube shaped Cu8 cluster core with μ4 bridging Me2Si(NPh)22– ligands. The copper atoms display an almost linear coordination with Cu–N distances in the range of 191.1(3)–191.4(3) pm. The Cu–Cu distances are 265.7(1)–267.3(1) pm. Compound 2 forms monoclinic crystals, space group P21/n, with a = 1461.87(4), b = 2483.77(6), c = 2725.49(8) pm, β = 100.77(1)°. The cluster core of compound 2 consists formally of two mutually perpendicular arranged trigonal prisms, which share a common square face. Like in the case of compound 1 the square faces of the cluster core are capped by μ4 bridging Ph2Si(NPh)22– ligands. The copper atoms adopt a nearly linear N–Cu–N coordination with Cu–N distances of 190.0(4)–195.1(4) pm. The Cu–Cu distances are 252.3(1)–305.6(1) pm.  相似文献   

2.
The borazine derivatives B, B′, B″‐tris[(trichlorosilyl)methyl]borazine [B{CH2(SiCl3)}NH]3 ( 1 ), and B, B′, B″‐tris[{dichloro(methyl)silyl}methyl]borazine [B{CH2(SiCl2CH3)}NH]3 ( 2 ) were prepared by reacting (Cl3Si)CH2(BCl2) ( 3 ) and [Cl2(CH3)Si]CH2(BCl2) ( 4 ) with hexamethyldisilazane (hmds), respectively. Both compounds, 1 and 2 crystallize in space group R3c with a = 1712.53(4), c = 1230.33(4) pm, Z = 6, R1 = 0.030, and a = 1713.8(2), c = 1258.7(2) pm, Z = 6, R1 = 0.034, respectively. According to the single crystal X‐ray diffraction analyses, the title compounds show a planar B3N3 six‐membered ring with B—N distances of 142.3(3) pm (point symmetry C3) and synfacial oriented substituents. The borazine derivatives have also been characterized by NMR and IR spectroscopy as well as by MS spectrometry.  相似文献   

3.
Hydroalumination or hydrogallation of tri(ethynyl)silanes, RSi(C≡C‐Ar)3 ( 1a , R = Ph, Ar = Ph; 1b , R = Me, Ar = Ph; 1c , R = Me, Ar = C6H4Me), with the element hydrides H‐EtBu2 (E = Al, Ga) in stoichiometric ratios of 1:1 to 1:3 at ambient temperature yielded the addition products (PhC≡C)2(R)Si[(tBu2E)C=C(H)Ph] ( 2 , R = Ph, E = Ga; 3a , R = Me, E = Al; 3b , R = Me, E = Ga), (PhC≡C)(Me)Si[(tBu2E)C=C(H)Ph]2 ( 4a , E = Al, 4b , E = Ga) and (Me)Si[(tBu2Al)C=C(H)Ar]3 ( 5 , Ar = Ph; 6 , Ar = C6H4Me). Compounds 2 – 4 show a relatively close interaction between the coordinatively unsaturated aluminium or gallium atoms and one of the Cα(≡C) atoms of unreacted alkyne substituents [245 (E = Al) and 266 pm (E = Ga)] that stabilises the kinetically favoured cis addition products with E and hydrogen on the same side of the resulting C=C double bonds. In the absence of these stabilising effects the compounds were found to isomerise to the thermodynamically favoured trans isomers.  相似文献   

4.
Treatment of molybdenum(II) chloride with the difunctional silylamide Li2Me2Si(NPh)2 led to the formation of the tetranuclear cluster compound [Mo4{Me2Si(NPh)2}4]. According to the X-ray crystal structure determination, the central core of the cluster consists of four molybdenum atoms in a nearly rectangular arrangement. There are two μ4-κ-N,N,N',N'-Me2Si(NPh)22– ligands capping the Mo4 rectangle and two μ2-Me2Si(NPh)22– ligands located at opposite edges. The alternating Mo–Mo distances of 218.1(1) and 279.5(1) pm indicate the presence of a cyclobutadiyne type cluster with alternating Mo–Mo triple and single bonds.  相似文献   

5.
X-Ray Structural Studies of the Polymorphic Elpasolites K2LiAlF6 and Rb2LiGaF6 At single crystals of low (LT) and high temperature (HT) modifications of K2LiAlF6 and of Rb2LiGaF6, synthesized at normal pressure (NP), the crystal structures were refined. LT-K2LiAlF6 is a cubic elpasolite (Fm3m, Z = 4, a = 784.2(1) pm; Al–F: 181.2(1) pm), HT-K2LiAlF6 and NP-Rb2LiGaF6 are isostructural with the hexagonal-rhombohedral type of Cs2NaCrF6 (R3m, Z = 6, a = 561.7(1) resp. 586.3(1), c = 2757.6(6) resp. 2856.3(5) pm; mean values Al–F: 180.5 resp. Ga–F: 189.3 pm). A cubic high pressure modification (HP) of Rb2LiGaF6 was obtainable as a powder only (a = 820.8(2) pm). The relations of distances between LT/HT and HP/NP polymorphs of elpasolites are compared and discussed.  相似文献   

6.
Bifunctionalized 1 H‐Phosphirene and g1‐1‐Phosphaallene Tungsten Complexes The tungsten(0) complex [{(Me3Si)2HCPC(Ph)=N}W(CO)5] 1 reacts upon heating with acetylene derivatives 2 a–d in toluene to form benzonitrile and the complexes [{(Me3Si)2HCPC(R)=COEt} · W(CO)5] 5 a–d ( 5 a : R = SiMe3; 5 b : R = SiPh3; 5 c : R = SnMe3; 5 d : R = SnPh3) and [{(Me3Si)2HCP=C=C(OEt)R} · W(CO)5] 6 a, b ( 6 a : R = SnMe3; 6 b : R = SnPh3), which have been isolated by chromatography; complexes 5 c and 6 a have been characterized as mixtures. Spectroscopic and mass spectrometric data are discussed. The crystal structure of the compound 5 a was determined by X‐ray single crystal structure analysis ( 5 a : space group P21/n, Z = 4, a = 977.6(2) pm, b = 1814.6(4) pm, c = 1628.0(4) pm, β = 93.95(2)°).  相似文献   

7.
New intermetallic rare earth iridium silicides Sm3Ir2Si2, HoIrSi, and YbIrSi were synthesized by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. HoIrSi and YbIrSi crystallize in a TiNiSi type structure, space group Pnma: a = 677.1(1), b = 417.37(6), c = 745.1(1) pm, wR2 = 0.0930, 340 F2 values for HoIrSi, and a = 667.2(2), b = 414.16(8), c = 742.8(2) pm, wR2 = 0.0370, 262 F2 values for YbIrSi with 20 parameters for each refinement. The iridium and silicon atoms build a three‐dimensional [IrSi] network in which the holmium(ytterbium) atoms are located in distorted hexagonal channels. Short Ir–Si distances (246–256 pm in YbIrSi) are indicative for strong Ir–Si bonding. Sm3Ir2Si2 crystallizes in a site occupancy variant of the W3CoB3 type: Cmcm, a = 409.69(2), b = 1059.32(7), c = 1327.53(8) pm, wR2 = 0.0995, 383 F2 values and 27 variables. The Ir1, Ir2, and Si atoms occupy the Co, B2, and B1 positions of W3CoB3, leading to eight‐membered Ir4Si4 rings within the puckered two‐dimensional [IrSi] network. The Ir–Si distances range from 245 to 251 pm. The [IrSi] networks are separated by the samarium atoms. Chemical bonding in HoIrSi, YbIrSi, and Sm3Ir2Si2 is briefly discussed.  相似文献   

8.
The new ternary rhodium borides Mg3Rh5B2 and Sc3Rh5B2 (P4/mbm, Z = 2; a = 943.4(1) pm, c = 292.2(1) pm and a = 943.2(1) pm, c = 308.7(1) pm, respectively) crystallize with the Ti3Co5B2 type structure. Mg and Sc may in part be substituted by a variety of elements M. For M = Si and Fe, homogeneity ranges were found according to A3–xMxRh5B2 with 0 ≤ x ≤ 1.0 for A = Sc and with x up to 1.5 for A = Mg. Quaternary compounds with x = 1 (A2MRh5B2: A/M in short) were prepared with M = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sn (Co, Ni only with A = Mg; Sn only with A = Sc; P, As with deficiencies). Single crystal X‐ray investigations show an ordered substitutional variant of the Ti3Co5B2 type in which the M atoms are arranged in chains along [001] with intrachain and interchain M–M distances of about 300 pm and 660 pm, respectively. Measuring the magnetisation (1.7 K–800 K) of the phases Mg/Mn, Sc/Mn, Mg/Fe, and Sc/Fe reveals antiferromagnetic interactions in the first and dominating ferromagnetic intrachain interactions in the remaining ones. Interchain interactions of antiferromagnetic nature are evident in Sc/Mn and Mg/Fe leading to metamagnetism below TN = 130 K, while Sc/Fe behaves ferromagnetically below TC = 450 K. The overall trend towards stronger ferromagnetic interactions with increasing valence electron concentration is obvious.  相似文献   

9.
Weak Sn…I Interactions in the Crystal Structures of the Iodostannates [SnI4]2– and [SnI3] Iodostannate complexes can be crystallized from SnI2 solutions in polar organic solvents by precipitation with large counterions. Thereby isolated anions as well as one, two or three‐dimensional polymeric anionic substructures are established, in which SnI3 and SnI42– groups are linked by weak Sn…I interactions. Examples are the iodostannates [Me3N–(CH2)2–NMe3][SnI4] ( 1 ), (Ph4P)2[Sn2I6] ( 2 ), [Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ), [Fe(dmf)6][SnI3]2 ( 4 ) and (Pr4N)[SnI3] ( 5 ), which have been characterized by single crystal X‐ray diffraction. [Me3N–(CH2)2–NMe3][SnI4] ( 1 ): a = 671.6(2), b = 1373.3(4), c = 2046.6(9) pm, V = 1887.7(11) · 106 pm3, space group Pbcm;(Ph4P)2[Sn2I6] ( 2 ): a = 1168.05(6), b = 717.06(4), c = 3093.40(10) pm, β = 101.202(4)°, V = 2541.6(2) · 106 pm3, space group P21/n;[Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ): a = 695.58(4), b = 1748.30(8), c = 987.12(5) pm, β = 92.789(6)°, V = 1199.00(11) · 106 pm3, space group P21/c;[Fe(dmf)6][SnI3]2 ( 4 ): a = 884.99(8), b = 1019.04(8), c = 1218.20(8) pm, α = 92.715(7), β = 105.826(7), γ = 98.241(7), V = 1041.7(1) · 106 pm3, space group P1;(Pr4N)[SnI3] ( 5 ): a = 912.6(2), b = 1205.1(2), c = 1885.4(3) pm, V = 2073.5(7) · 106 pm3, space group P212121.  相似文献   

10.
Synthesis and Structure of Threenuclear Heterometallic Complexes with Nitrido Bridges between Re and Sn The threenuclear heterometallic complex [(Me2PhP)2ClRe(μ-Cl)N]2SnCl4 results from the reaction of ReNCl2(PMe2Ph)3 with SnCl4 in CH2Cl2. The brown, air-sensitive complex is diamagnetic. It crystallizes with two solvate molecules as [(Me2PhP)2ClRe(μ-Cl)N]2SnCl4 · 2 CH2Cl2 in the space group P 1 with a = 1189.1(2), b = 1262.3(2), c = 1776.7(3) pm, α = 86.04(2), β = 89.27(2), γ = 72.75(1)°, Z = 2. In the threenuclear complex two fragments (Me2PhP)2ClReN, which are connected by two Cl bridges, coordinate with their nitrido ligands one SnCl4 molecule. The two resulting nitrido bridges complete the coordination of the Sn atom to a distorted octahedron with a cis arrangement of the N atoms. The bent nitrido bridges (Re–N–Sn = 155) are asymmetrical with distances Re–N = 168 pm and Sn–N = 225 pm. An incomplete exclusion of water during the synthesis leads to the formation of [(Me2PhP)3ClRe(μ-Cl)N]Sn2(OH)Cl7 · 2 CH2Cl2 in form of air-stable, red-violett crystals (P 1, a = 1074.1(2), b = 1251.1(3), c = 1685.0(1) pm, α = 99.61(2), β = 91.49(2), γ = 92.69(2)°, Z = 2). In the diamagnetic complex one molecule ReNCl2(PMe2Ph)3 is coordinated by the nitrido ligand and one Cl bridge to the Sn atoms of a unit Sn2(OH)Cl7. In this unit the two Sn atoms are connected by one Cl and one OH bridge. The distances in the almost linear nitrido bridge (Re–N–Sn = 164.6) are Re–N = 170.5 pm and Sn–N = 219.8 pm.  相似文献   

11.
Bis(dimethylstibanyl)oxane ( 1 ) and ‐sulfane ( 2 ), the two simplest organoelement species with an Sb–E–Sb fragment (E = O, S), were prepared by alkaline hydrolysis of bromodimethylstibane and by oxidation of tetramethyldistibane with sulfur [18], respectively. As shown by an x‐ray structure analysis of compound 1 (m. p. < –20 °C; P212121, a = 675.9(2), b = 803.1(2), c = 1666.8(4) pm at –70 ± 2 °C; Z = 4; R1 = 0.042), the molecules (O–Sb 198.8 and 209.9 pm, Sb–O–Sb 123.0°) adopt a syn‐anti conformation in the solid state and are arranged in zigzag chains along [010] via weak intermolecular O‥Sb interactions (258.5 pm, Sb–O‥Sb 117.8°, O‥Sb–O 173.5°) making use, however, of only one Me2Sb moiety. Primary and secondary bond lengths and angles agree very well with corresponding values published for valentinite, the orthorhombic modification of antimony(III) oxide [3]. Bis(dimethylstibanyl)sulfane ( 2 ) (m. p. 29 to 31 °C) crystallizes in the uncommon space group P6522 (a = 927.8(3), c = 1940.9(7) pm at –100 ± 2 °C; Z = 6; R1 = 0.021). Owing to coordination numbers of (1 + 1) and (2 + 2) for both Me2Sb groups and the sulfur atom, respectively, molecules with an approximate syn‐syn conformation (S–Sb 249.8 pm, Sb–S–Sb 92.35°) build up a three‐dimensional net of double helices which are linked together by Sb‥S contacts (316.4 pm). These parameters shed more light onto the rather complicated structure and bonding situation in stibnite (antimony(III) sulfide [4]). The molecular packing of compound 2 is compared with the structures of relevant inorganic solids, especially with that of β‐quartz [37].  相似文献   

12.
The rare earth ruthenium gallides Ln2Ru3Ga5 (Ln = La, Ce, Pr, Nd, Sm) were prepared by arc‐melting of cold‐pressed pellets of the elemental components. They crystallize with a tetragonal structure (P4/mnc, Z = 4) first reported for U2Mn3Si5. The crystal structures of the cerium and samarium compounds were refined from single‐crystal X‐ray data, resulting in significant deviations from the ideal compositions: Ce2Ru2.31(1)Ga5.69(1), a = 1135.10(8) pm, c = 580.58(6) pm, RF = 0.022 for 742 structure factors; Sm2Ru2.73(2)Ga5.27(2), a = 1132.95(9) pm, c = 562.71(6) pm, RF = 0.026 for 566 structure factors and 32 variable parameters each. The deviations from the ideal compositions 2:3:5 are discussed. A mixed Ru/Ga occupancy occurs only for one atomic site. The displacement parameters are relatively large for atoms with mixed occupancy within their coordination shell and small for atoms with no neighboring sites of mixed occupancy. Chemical bonding is analyzed on the basis of interatomic distances. Ln–Ga bonding is stronger than Ln–Ru bonding. Ru–Ga bonding is strong and Ru–Ru bonding is weak. The Ga–Ga interactions are of similar strength as in elemental gallium.  相似文献   

13.
New Hypersilanides of the Earth Metals Aluminium, Gallium, and Indium The dialkylaluminiumchlorides R2AlCl (with R = Me, Et; Me = CH3, Et = C2H5) react with base‐free lithium‐tris(trimethylsilyl)silanide (Li–Hsi; Hsi = –Si(SiMe3)3), forming the pyrophoric dialkyl aluminiumhypersilanides R2Al–Hsi. The methyl compound is dimeric in solid state (triclinic space group P1, Z = 1 dimer), as in Al2Me6 the association takes place by two Al–Me–Al bridges, forming a centrosymmetric molecule of approximately C2h point‐symmetry. Contrary to this (Me2GaCl)2 and Li–Hsi form a mixture of (MeGa(Hsi)Cl)2 and [Me3Ga–Hsi]Li. The monochloride again is a centrosymmetric, chlorine‐bridged dimer (monoclinic space group P21/n, Z = 2 dimers). The extremely air sensitive gallate can be prepared from GaMe3 and Li–Hsi (1 : 1 ratio), as well as the homologous [Me3Ga–Hsi]Na and [Me3Ga–Hsi]K from GaMe3 and the corresponding alkalimetal hypersilanides. The 1 : 1 toluene‐solvat of the sodium salt crystallizes in the orthorhombic space group Pbca (Z = 8) with polymeric zig‐zag‐chains, in which the toluene‐capped Na‐ions act as GaMe…Na…Me2Ga‐bridges between [Me3Ga–Hsi] anions. The reaction of InCl3 with Li–Hsi (1 : 3 ratio) mainly gives LiCl, metallic In and the “dihypersilyl” Hsi–Hsi. Ruby‐red (Hsi)2In–In(Hsi)2 could also be obtained in low yield and characterized by X‐ray structure elucidation (space group P21/c, Z = 4). The 1H, 13C, 29Si and 7Li NMR‐ and the vibrational spectra of the hypersilanides have been measured and discussed.  相似文献   

14.
Synthesis and Molecular Structure of [Al(SiMe3)3(DBU)] (DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene) [Al(SiMe3)3(OEt2)] reacts with DBU (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) at 0 °C yielding [Al(SiMe3)3 · (DBU)] ( 1 ). 1 was characterised spectroscopically (1H, 13C, 29Si, 27Al NMR, IR, MS) and by X-ray structure determination [monoclinic, C2/c, a = 33.053(2), b = 9.307(1), c = 20.810(1) Å, β = 124.07(2)°, V = 5302.4(5) Å3, Z = 8, 218(2) K]. 1 does not react with [Cp2ZrCl2] even in boiling toluene.  相似文献   

15.
The preparation and structures of 2, 2′‐dihydroxyazobenzenato‐dibutyl‐tin [Bu2SnL] and 2, 2′‐dihydroxyazobenzenato‐dimethyl‐tin [Me2SnL] are described. The complexes were characterized by IR, NMR (1H, 13C, 119Sn) and UV/VIS spectra. The crystal structures were determined by X‐ray diffraction on single crystals. [Bu2SnL]: monoclinic, space group P21/c, cell constants at 208 K: a = 860.73(5), b = 973, 51(18), c = 2340.0(3) pm, β = 93.615(11)°; R1 = 0.0546. [Me2SnL]: orthorhombic, space group Pbcn, cell constants at 208 K: a = 1914.6(4), b = 1041.3(3), c = 1323.27(14) pm; R1 = 0.0529.  相似文献   

16.
Hydrogallation of Me3Si–C≡C–NR'2 with R2Ga–H (R = tBu, CH2tBu, iBu) yielded Ga/N‐based active Lewis pairs, R2Ga–C(SiMe3)=C(H)–NR'2 ( 7 ). The Ga and N atoms adopt cis‐positions at the C=C bonds and show weak Ga–N interactions. tBu2GaH and Me3Si–C≡C–N(C2H4)2NMe afforded under exposure of daylight the trifunctional digallium(II) compound [MeN(C2H4)2N](H)C=C(SiMe3)Ga(tBu)–Ga(tBu)C(SiMe3)=C(H)[N(C2H4)2NMe] ( 8 ), which results from elimination of isobutene and H2 and Ga–Ga bond formation. 8 was selectively obtained from the ynamine and [tBu(H)Ga–Ga(H)tBu]2[HGatBu2]2. 7a (R = tBu; NR'2 = 2,6‐Me2NC5H8) and H8C4N–C≡N afforded the adduct tBu2Ga‐C(SiMe3)=C(H)(2,6‐Me2NC5H8) · N≡C–NC4H8 ( 11 ) with the nitrile bound to gallium. The analogous ALP with harder Al atoms yielded an adduct of the nitrile dimer or oligomers of the nitrile at room temperature. The reaction of 7a with Ph–N=C=O led to the insertion of two NCO groups into the Ga–Cvinyl bond to yield a GaOCNCN heterocycle with Ga bound to O and N atoms ( 12 ).  相似文献   

17.
Substitution Reactions of Bis(trimethylelement)carbodiimides of Silicon and Germanium with Metal Chlorides and Dimethylmetalchlorides of Sb, Al, Ga, and In The reaction of Me3Ge? N?C?N? GeMe3 (Me?CH3) with SbCl5 in a 1 : 1 molar ratio forms dimeric Cl4SbNCNGeMe3 in high yields. The corresponding compounds (X2MNCNSiMe3)2–3 (with X?Cl, Me and M = Al, Ga), formed by reactions of X2MCl and Me3SiNCNSiMe3, are less stable and tend to condensations, eliminating Me3SiX. The carbodiimide derivates (Me2MNCNEMe3)2–3 (with E = Si, Ge) are also available in aprotic solvents from polymeric LiNCNEMe3 and Me2MCl (M = Al, Ga, In). According to the IR and Raman spectra the low associated substitution products consists of cyclic ring skeletons and asymmetric > N? C?N? EMe3 units with cyanamide conformation.  相似文献   

18.
Synthesis and Structure of Two- and Threenuclear Heterometallic Complexes with Nitrido Bridges between Re and Mo The reaction of ReNCl2(PMe2Ph)3 with MoCl4(NCEt)2 yields the heterometallic threenuclear complex [{(Me2PhP)3(EtCN)ClRe≡N–}2MoCl4][MoNCl5]. The anion [MoNCl5]2– presumably results from a transfer of the nitrido ligand from the Re to the Mo atom. The air-sensitive compound is paramagnetic with μeff = 2.87 B. M. at room temperature. A reduction of the magnetic moment to 1.74 B.M at 20 K starts at 140 K. The complex crystallizes in the orthorhombic space group Pca21 with a = 2430(1), b = 1328(1), c = 2436.3(2) pm, Z = 4. With bond angles Re–N–Mo of 164° and 167° the nitrido bridges are almost linear. The distances Re–N of 169 and 170 pm can be interpreted with triple bonds. The Mo–N bond lengths of 210 and 211 pm correspond to single bonds. In the anion [MoNCl5]2– the distance Mo≡N is 167 pm. Hydrolysis of the threenuclear complex results in a cleavage of one of the nitrido bridges to yield (Me2PhP)3(EtCN)ClRe≡N–MoOCl4. The compound is paramagnetic with μeff = 1.71 B.M. at room temperature. It crystallizes in the orthorhombic space group Pbca with a = 1718.5(4), b = 2037(1), c = 2041.1(7) pm, Z = 8. In the dinuclear complex the [MoOCl4] unit is only weakly coordinated to the nitrido ligand with Mo–N = 246.5 pm, while the distance of the Re≡N bond of 168.1 pm is almost unchanged in comparison with a terminal bond. The bond angle Re≡N–Mo is 165.6°.  相似文献   

19.
Treatment of [Li(H2Ga{CH(SiMe3)2}2)] ? 2 OEt2 ( 1? 2 OEt2) with two equivalents of tert‐butyl hydrogen peroxide, H‐O‐O‐CMe3, afforded the organogallium peroxide [({(Me3Si)2HC}2Ga(OH)(OOCMe3)Li)2] ( 3 ), which possesses oxidizing peroxo groups in close proximity to reducing Ga? C bonds. The lithium atoms of the dimeric formula units are coordinated by both oxygen atoms of the peroxides and by two hydroxo groups. The cleavage of the Ga? C bond was not observed, even when an excess of H‐O‐O‐CMe3 was applied. Instead, the adduct [{(Me3Si)2HC}2Ga(OH)(OOCMe3)2Li2(HOOCMe3)] ( 4 ) was isolated, which has an intact H‐O‐O‐CMe3 molecule terminally attached to lithium. A similar structural motif was found for the compound [(LiOOCMe3)2(HOOCMe3)2] ( 5 ). The trihydrido gallanate [Li(H3Ga? {CH(SiMe3)2})] ? OEt2 ( 2 ) yielded the unique peroxide [({(Me3Si)2HC}? Ga(H)(OOCMe3)2Li)2] ( 6 ) under similar conditions that possesses Ga? C and even more reactive Ga? H bonds beside peroxo groups. It decomposed at room temperature by the insertion of oxygen atoms into the Ga? H bonds and the formation of [({(Me3Si)2HC}? Ga(OH)(OCMe3)(OOCMe3)Li)2] ( 7 ), which was isolated in a low yield. Further decomposition gave the complete degradation of all peroxo groups with the formation of a relatively complicated Li4Ga4O8 cage ( 8 ).  相似文献   

20.
Synthesis and Crystal Structure of the Aminoiminophosphinate Copper(I) Complex [Cu(Me3SiNP(Ph)2NSiMe3)]2 The title compound 1 was prepared by the reaction of Me3SiNP(Ph)2N(SiMe3)2 with copper(I) chloride at 120 °C to give colourless crystals which were characterized by a crystal structure determination. Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 1854.0(3), b = 1256.2(3), c = 1969.9(3) pm, β = 106.30(2)°; R1 = 0.063. 1 forms dimeric molecules with a nonplanar Cu2N4P2 eight‐membered ring of symmetry C2 and a rather long Cu…Cu distance of 262.1(1) pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号