首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
New diketopyrrolopyrrole (DPP)‐containing amorphous conjugated polymers, such as poly(3‐(5‐((9,10‐bis((4‐hexylphenyl)ethynyl)‐6‐(prop‐1‐ynyl)anthracen‐2‐yl)ethynyl) thiophen‐2‐yl)‐5‐(2‐hexyldecyl)‐2‐(2‐octyldodecyl)‐6‐(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 4 ), and poly(3‐(5‐((2,6‐bis((4‐hexylphenyl)ethynyl)‐10‐(prop‐1‐ynyl)anthracen‐9‐yl)ethynyl)thiophen‐2‐yl)‐2,5‐bis(2‐octyldodecyl)‐6‐(thio phen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione) ( 7 ), were successfully synthesized via Sonogashira coupling reactions under microwave conditions. Copolymer 7 , incorporating a DPP moiety at the 9,10‐position of the anthracene ring through a triple bond, showed a much lower bandgap energy (Eg = 1.81 eV) than copolymer 4 (Eg = 2.13 eV). Tuning of the molecular frontier orbital energies was achieved by only changing the anchoring position of dithiophenyl‐DPP from the 2,6‐ to the 9,10‐position in the anthracene ring. Because of the donor–acceptor (D–A) interaction and the two‐dimensional planar structure of the X‐shaped donor monomer, the resulting polymers showed good interchain π?π stacking in the thin‐film state, despite being amorphous polymers. When the newly synthesized polymer 7 was used as a semiconductor material in an organic thin‐film transistor, the best mobility of up to 0.12 cm2 V?1 s?1 (Ion/off = ~ 4.4 × 106) was observed, which is one of the highest values recorded for amorphous polymer films reported to date. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Two electroactive polystyrene derivatives para‐ substituted with π‐conjugated oligothiophene, poly(5‐hexyl‐5″‐(4‐vinylphenyl)‐2,2′:5′,2″‐terthiophene) ( PH3TS ), and poly(5‐hexyl‐5″″‐(4‐vinylphenyl)‐2,2′:5′,2″:5″,2″′:5″′,2″″‐quinquethiophene) ( PH5TS ) have been successfully synthesized via the Stille coupling reaction between tributyltin postfunctionalized poly(4‐(2‐thiophenyl)styrene) ( PTS ) and bromo‐oligothiophene. The effect of the chain length of the pendant oligothiophenes on properties of the resulting polymers including solubility, thermal stability, optical absorption, and electroactivation energy levels has been studied by using a variety of techniques such as thermogravimetric analyzer, differential scanning calorimetry, UV–Vis, Fluorescence, and cyclic voltammetry. With shielding of the hexyl terminal groups attached to the pendant oligothiophene units, no obvious chain aggregation was observed for both PH3TS and PH5TS even in a poor solvent environment. When compared with conventional linear conjugated polymer systems, the concept of grafting electroactive units as pendant side chains via postfunctionalizing aliphatic polymers might offer a strategy to precisely synthesize new electroactive polymer materials for a number of organic electronic applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A new aromatic, unsymmetrical ether diamine with a trifluoromethyl pendent group, 1,4‐(2′‐trifluoromethyl‐4′,4″‐diaminodiphenoxy)benzene, was successfully synthesized in three steps with hydroquinone as a starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, 2,2′‐bis(3,4‐dicarboxyphenyl)‐hexafluoropropane dianhydride, and pyromellitic dianhydride, via a conventional two‐step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction studies, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.56–0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low‐boiling‐point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 5% weight loss) above 522 °C and glass‐transition temperatures in the range of 232–272 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 74.5–121.7 MPa, elongations at break of 6–13%, and initial moduli of 1.46–1.95 GPa, and good dielectric properties, with low dielectric constants of 1.82–2.53 at 10 MHz. Wide‐angle X‐ray diffraction measurements revealed that these polyimides were predominantly amorphous. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced microelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6836–6846, 2006  相似文献   

4.
A series of fluorinated poly(amide imide)s were prepared from 1,4‐bis(2′‐trifluoromethyl‐4′‐trimellitimidophenoxy)benzene and various aromatic diamines [3,3′,5,5′‐tetramethyl‐4,4′‐diaminediphenylmethane, α,α‐bis(4‐amino‐3,5‐dimethyl phenyl)‐3′‐trifluoromethylphenylmethane, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, 4‐(3′‐trifluoromethylphenyl)‐2,6‐bis(3′‐aminophenyl)pyridine, and 1,1‐bis(4′‐aminophenyl)‐1‐(3′‐trifluoromethylphenyl)‐2,2,2‐trifluoroethane]. The fluorinated poly(amide imide)s, prepared by a one‐step polycondensation procedure, had good solubility both in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and cyclopentanone, and in common organic solvents, such as tetrahydrofuran and m‐cresol. Strong and flexible polymer films with tensile strengths of 84–99 MPa and ultimate elongation values of 6–9% were prepared by the casting of polymer solutions onto glass substrates, followed by thermal baking. The poly(amide imide) films exhibited high thermal stability, with glass‐transition temperatures of 257–266 °C and initial thermal decomposition temperatures of greater than 540 °C. The polymer films also had good dielectric properties, with dielectric constants of 3.26–3.52 and dissipation factors of 3.0–7.7 × 10?3, and acceptable electrical insulating properties. The balance of excellent solubility and thermal stability associated with good mechanical and electrical properties made the poly(amide imide)s potential candidates for practical applications in the microelectronics industry and other related fields. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1831–1840, 2003  相似文献   

5.
A series of organic/inorganic hybrid star‐shaped polymers were synthesized by atom transfer radical polymerization using 3‐(3,5,7,9,11,13,15‐heptacyclohexyl‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxane‐1‐yl)propyl methacrylate (MA‐POSS) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomers and octakis(2‐bromo‐2‐methylpropionoxypropyldimethylsiloxy)octasilsesquioxane as an initiator. Star‐shaped polymers with methyl methacrylate (MMA) and PEGMA moieties were also prepared for comparison purposes. Dimensionally stable freestanding film could be obtained from the hybrid star‐shaped polymer containing 26 wt % of MA‐POSS moieties although its glass transition temperature is very low, ?60.9 °C. As a result, the hybrid star‐shaped polymer electrolyte containing lithium bis(trifluoromethanesulfonyl)imide showed ionic conductivities (1.75 × 10?5 S/cm at 30 °C), which were two orders of magnitude higher than those of the star‐shaped polymer electrolyte with MMA moieties. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
In continuation of our work, we synthesized 2‐(sulfamoylphenyl)‐4′‐amino‐4‐(4″‐hydroxyphenyl)‐thiazole ( 3a ), which were reacted with various (aryl/hetroaryl) aldehyde to form 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐hydroxyphenyl)‐thiazoles ( 4a , 4b , 4c , 4d , 4e , 4f ). Glucosylation of compounds ( 4a , 4b , 4c , 4d , 4e , 4f ) have been done by using acetobromoglucose as a glucosyl donor to afford 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(2,3,4,6‐tetra‐O‐acetyl‐4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 5a , 5b , 5c , 5d , 5e , 5f ), further on deacetylation to produce 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 6a , 6b , 6c , 6d , 6e , 6f ). The compounds are confirmed by FTIR, 1H‐NMR, 13C‐NMR, and ES‐Mass spectral analysis. J. Heterocyclic Chem., (2011).  相似文献   

7.
A novel monomer, 2,2‐bis‐(4′‐fluorobenzoylphenoxy)‐4,4,6,6‐bis[spiro‐(2′,2″‐dioxy‐1′, 1′‐biphenylyl)] cyclotriphosphazene, was synthesized and polymerized with 4,4′‐difluorobenzophenone as a comonomer and 4,4′‐isopropylidenediphenol or 4,4′‐(hexafluoroisopropylidene) diphenol in N,N‐dimethylacetamide at 162 °C for 4 h to give two series of aromatic cyclolinear phosphazene polyetherketones containing bis‐spiro‐substituted cyclotriphosphazene groups. The structure of the monomer was confirmed by 1H, 13C, and 31P NMR. The effect of the incorporation of the bis‐spiro‐substituted cyclotriphosphazene group on the thermal properties of these polymers was investigated by DSC and thermogravimetric analysis. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2993–2997, 2001  相似文献   

8.
A new carbazole‐derived, triphenylamine (TPA)‐containing aromatic dicarboxylic acid monomer, 4,4′‐dicarboxy‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)TPA, was synthesized, and it led to a series of electroactive aromatic polyamides with main‐chain TPA and pendent 3,6‐bis(tert‐butyl)carbazole units by reacting it with various aromatic diamines via the phosphorylation polyamidation technique. The polyamides were amorphous with good solubility in many organic solvents and could be solution‐cast into flexible and strong films. They showed high glass‐transition temperatures (282–335 °C) and high thermal stability (10% weight loss temperatures >480 °C). The electroactive polymer films had well‐defined and reversible redox couples with good cycle stability in acetonitrile solutions. The polymer films also exhibited fluorescent and multielectrochromic behaviors. The anodically electrochromic polyamide films had moderate coloration efficiency (~100 cm2/C) and high optical contrast ratio of transmittance change (Δ%T) up to 47% at 813 nm and 48% at 414 nm for the green coloring. After hundreds of cyclic switches, the polymer films still retained good redox and electrochromic activity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
(±)‐exo,endo‐5,6‐Bis{[[11′‐[2″,5″‐bis[2‐(3′‐fluoro‐4′‐n‐alkoxyphenyl)ethynyl]phenyl]undecyl]oxy]carbonyl}bicyclo[2.2.1]hept‐2‐ene (n = 1–12) monomers were polymerized by ring‐opening metathesis polymerization in tetrahydrofuran at room temperature with Mo(CHCMe2Ph)(N‐2,6‐iPr2Ph)(OtBu)2 as the initiator to produce polymers with number‐average degrees of polymerization of 8–37 and relatively narrow polydispersities (polydispersity index = 1.08–1.31). The thermotropic behavior of these materials was independent of the molecular weight and therefore representative of that of a polymer at approximately 15 repeat units. The polymers exhibited an enantiotropic nematic mesophase when n was 2 or greater. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4076–4087, 2006  相似文献   

10.
Fluorinated copolyimides derived from 4,4′‐oxydiphthalic anhydride (ODPA) with 4,4′‐oxydianline (ODA) and trifluoromethyl‐containing aromatic diamines have been synthesized and characterized. The trifluoromethyl‐containing diamines include 2,4‐diamino‐3′‐trifluoromethylazobenzene, 2,4‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] aniline, 3,5‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] benzamide, 3,5‐diamino‐1‐[(3′‐trifluoromethyl) phenyl] benzamide, 1,4‐bis(4′‐aminophenoxy)‐2‐(3′‐trifluoromethylphenyl) benzene, 3,5‐diaminobenzenetrifluoride, 4,4′‐diamino‐4″‐(p‐trifluoromethyl phenoxy) triphenylamine, and 4‐[(4′‐trifluoromethylphenoxy) phenyl]‐2,6‐bis(4″‐aminophenyl)pyridine. Strong and flexible copolyimide films, produced by casting the polyamic acid solution followed by thermal imidization, exhibited great thermal stability and high mechanical properties. The polyimides had an ultraviolet–visible absorption cutoff at 330–340 nm and pretilt angles as high as 20° for nematic liquid crystals, making them great potential candidates for advanced liquid‐crystal display applications. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1583–1593, 2002  相似文献   

11.
An ω‐amino carboxylic acid monomer that contained a nonlinear optical (NLO) chromophore was prepared by a convergent synthesis. Strategies for selective protection/deprotection of the amino and carboxylic acid functionalities were developed. The protected monomer, 4‐[N‐(4‐benzyloxycarbonyl)butyl‐N‐methylamino]‐4′‐[2″,5″‐bis(decyloxy)‐4″‐(phthalimidomethyl)benzylsulfonyl]azobenzene, could be deprotected selectively or sequentially to give HOOC‐monomer‐N‐phthaloyl, benzyl‐OOC‐monomer‐NH2, or HOOC‐monomer‐NH2. Sequential synthesis was performed to yield main‐chain NLO dimers and tetramers. This was accomplished by selective deprotection and dicyclohexylcarbodiimide coupling. The HOOC‐monomer‐NH2 was polymerized by treatment with diphenylphosphoryl azide to give a main‐chain NLO polyamide. The monomer, dimer, tetramer, and polymer NLO materials were characterized by 1H, 13C, IR, and UV–visible spectroscopy as well as by gel permeation chromatography, differential scanning calorimetry, and elemental analysis. The NLO properties of these materials were measured. Thin films of the oligomers and polymer were prepared by spin casting on indium‐tin oxide coated glass. The second‐order NLO properties of the oligomers and polymer thin films were studied by in situ corona poling/second‐harmonic generation and attenuated total reflection methods. The optimal poling temperatures were significantly lower than the melting temperatures or glass‐transition temperatures of the oligomers and polymer. The poling efficiency increased in the following order: monomer, oligomers, and polymer. An electro‐optic coefficient of 4 pm/V at 1.06 μm was obtained for the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 546–559, 2000  相似文献   

12.
Two novel organic–inorganic hybrid polyfluorene derivatives, poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐[2,5‐bis(octyloxy)‐1,4‐phenylene]} (PFDOPPOSS) and poly{(9,9′‐dioctyl‐2,7‐fluorene)‐co‐(9,9′‐di‐POSS‐2,7‐fluorene)‐co‐bithiophene} (PFT2POSS), were synthesized by the Pd‐catalyzed Suzuki reaction of polyhedral oligomeric silsesquioxane (POSS) appended fluorene, dioctyl phenylene, and bithiophene moieties. The synthesized polymers were characterized with 1H NMR spectroscopy and elemental analysis. Photoluminescence (PL) studies showed that the incorporation of the POSS pendant into the polyfluorene derivatives significantly enhanced the fluorescence quantum yields of the polymer films, likely via a reduction in the degree of interchain interaction as well as keto formation. Additionally, the blue‐light‐emitting polyfluorene derivative PFDOPPOSS showed high thermal color stability in PL. Moreover, single‐layer light‐emitting diode devices of an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/polymer/Ca/Al configuration fabricated with PFDOPPOSS and PFT2POSS showed much improved brightness, maximum luminescence intensity, and quantum efficiency in comparison with devices fabricated with the corresponding pristine polymers PFDOP and PFT2. In particular, the maximum external quantum efficiency of PFT2POSS was 0.13%, which was twice that of PFT2 (0.06%), and the maximum current efficiency of PFT2POSS was 0.38 cd/A, which again was twice that of PFT2 (0.19 cd/A). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2943–2954, 2006  相似文献   

13.
A new kind of UV stabilizers, 1‐(3′‐(benzotriazol‐2″‐yl)‐4′‐hydroxy‐benzoyl)‐3‐methyl‐5‐pyrazolones (1a‐d), was synthesized with the aim to bind them chemically to certain polymers. The reaction of 1d with substituted benzaldehydes 4 in the molten state at 150°C and in the solid state at room temperature produced the condensation products l‐(3′‐(5″‐chlorobenzotriazol‐2″‐yl)‐4′‐hydroxyl‐5′‐chlorobenzoyl)‐3‐methyl‐4‐arylmethylene‐5‐pyrazolones (2) and 4,4′‐arylmethylene‐bis [1‐(3′‐(5″‐chloro‐benzotriazol‐2″‐yl)‐4′‐hydroxy‐5′‐chloro‐benzoyl)‐3‐methyl‐5‐pyrazolone] s (3), respectively, as the major product. On the other hand, the reaction of 1d with 4 at 50°C in chloroform solution proceeded non‐selectively to give a mixture of 2 and 3.  相似文献   

14.
A new diimide‐dicarboxylic acid, 2,2′‐dimethyl‐4,4′‐bis(4‐trimellitimidophenoxy)biphenyl (DBTPB), containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by the condensation reaction of 2,2′‐dimethyl‐4,4′‐bis(4‐minophenoxy)biphenyl (DBAPB) with trimellitic anhydride in glacial acetic acid. A series of new polyamide‐imides were prepared by direct polycondensation of DBAPB and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP), using triphenyl phosphite and pyridine as condensing agents. The polymers were produced with high yield and moderate to high inherent viscosities of 0.86–1.33 dL · g−1. Wide‐angle X‐ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as NMP, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), dimethyl sulfoxide, pyridine, cyclohexanone, and tetrahydrofuran. These polyamide‐imides had glass‐transition temperatures between 224–302 °C and 10% weight loss temperatures in the range of 501–563 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from DMAc solution, had a tensile strength range of 93–115 MPa and a tensile modulus range of 2.0–2.3 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 63–70, 2001  相似文献   

15.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
A series of novel polyimides (PIs) ( 3a–d ) were prepared from 3,3′,5,5′‐tetramethyl‐4,4′‐diaminodiphenyl‐4 ″ ‐isopropyltoluene ( 1 ) with four aromatic dianhydrides via a one‐step high temperature polycondensation procedure. The obtained PIs showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents and chlorinated solvents. Their films were nearly colorless and exhibited high‐optical transparency, with the UV cutoff wavelength in the range of 328–353 nm and the transparency at 450 nm >80%. They also showed low‐dielectric constant (2.49–2.94 at 1 MHz) and low‐water absorptions (0.44–0.65%). Moreover, these PIs possessed high‐glass transition temperatures (Tg) beyond 327 °C and excellent thermal stability with 10% weight loss temperatures in the range of 530–555 °C in nitrogen atmosphere. In comparison with some fluorinated poly(ether imide)s derived from the trifluoromethyl‐substituted bis(ether amine)s, the resultant PIs 3a–d showed better solubility, lower cutoff wavelength, and higher Tg. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3309–3317, 2009  相似文献   

17.
Reaction of 2,5‐bis(dibromoboryl)thiophene ( 4 ) or 1,4‐bis(dibromoboryl)benzene ( 6 ) with two equivalents of N,N′‐dilithiated 2,3‐diaminopyridine ( 3 ) led to the generation of the pyridodiazaboroles 5 and 7 in which the two diazaborole rings are linked by 2,5‐thiophen‐diyl or 1,4‐phenylene units via the boron atom. The novel compounds were characterized by elemental analyses and spectroscopy (1H‐, 11B‐, 13C‐NMR, MS, and UV‐VIS). The molecular structure of 5 was elucidated by X‐ray diffraction. Cyclovoltammograms of 5 and 7 show two irreversible oxidation waves at 0.76 and 0.73 V, respectively vs Fc/Fc+. The novel compounds display intense blue luminescence with Stokes shifts of 76 and 74 nm and relative quantum yields of 39 and 43 % vs Coumarin 120 (Φ = 50 %).  相似文献   

18.
The new blue light polymer, poly(1′,4′‐phenylene‐1″,4″‐[2″‐(2″″‐ethylhexyloxy)]phenylene‐1‴,4‴‐phenylene‐2,5‐oxadiazolyl) (PPEPPO) was synthesized through the Suzuki reaction of diboronic acid, 2‐methoxy‐[5‐(2′‐ethylhexyl)oxy]‐1,4‐benzene diboronic acid (MEHBBA) and dibromide, 2,5‐bis(4′‐bromophenyl)‐1,3,4‐oxadiazole. This polymer was characterized with various spectroscopic methods. The solid PL spectrum of PPEPPO has a maximum peak at 444 nm corresponding to blue light. Blue LED has been fabricated using this polymer as the electroluminescent layer, ITO as the anode, and aluminum as cathode. This device emitted a blue light, with 40 V of turn‐on voltage. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3086–3091, 2000  相似文献   

19.
A novel fluorinated aromatic dianhydride, 4,4′‐[2,2,2‐trifluoro‐1‐(3‐trifluoromethyl‐phenyl)ethylidene]diphthalic anhydride (TFDA) was synthesized by coupling of 3′‐trifluoromethyl‐2,2,2‐trifluoroacetophenone with o‐xylene under the catalysis of trifluoromethanesulfonic acid, followed by oxidation of KMnO4 and dehydration. A series of fluorinated aromatic polyimides derived from the novel fluorinated aromatic dianhydride TFDA with various aromatic diamines, such as p‐phenylenediamine (p‐PDA), 4,4′‐oxydianiline (ODA), 1,4‐bis(4‐aminophenoxy)benzene (p‐APB), 1,3‐bis(4‐amino‐phenoxy)benzene (m‐APB), 4‐(4‐aminophenoxy)‐3‐trifluoromethylphenylamine (3FODA) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (6FAPB), were prepared by polycondensation procedure. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m‐cresol, as well as some of low boiling point organic solvents such as CHCl3, THF, and acetone. Homogeneous and stable polyimide solutions with solid content as high as 35–40 wt % could be achieved, which were prepared by strong and flexible polyimide films or coatings. The polymer films have good thermal stability with the glass transition temperature of 232–322 °C, the temperature at 5% weight loss of 500–530 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 80.5–133.2 MPa as well as elongations at breakage of 7.1–12.6%. It was also found that the polyimide films derived from TFDA and fluorinated aromatic diamines possess low dielectric constants of 2.75–3.02, a low dissipation factor in the range of 1.27–4.50 × 10?3, and low moisture absorptions <1.3%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4143–4152, 2004  相似文献   

20.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号