首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New aromatic diamines substituted with a trifluoromethyl group in the side chain, 2,4‐diamino‐3′‐trifluoromethylazobenzene, 2,4‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] aniline, and 3,5‐diamino‐1‐[(4′‐trifluoromethyl phenoxy) phenyl] benzamide were synthesized and characterized and used to prepare polyimides by a one‐step high‐temperature polycondensation method. Experimental results indicated that the prepared polyimides possess good solubility in strong organic solvents such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylformamide, and N,N′‐dimethylacetamide. Homogeneous solutions with solid contents as high as 15–20% can be prepared, which are stable for storing longer than 2 weeks at room temperature. The polyimides exhibited glass‐transition temperatures of 249–292 °C and good thermal stability. The PI‐Ic and PI‐IIIc films prepared by casting the fully imidized polymer solutions showed good transparency with cutoff wavelengths at 320–330 nm. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1572–1582, 2002  相似文献   

2.
A series of fluorinated poly(amide imide)s were prepared from 1,4‐bis(2′‐trifluoromethyl‐4′‐trimellitimidophenoxy)benzene and various aromatic diamines [3,3′,5,5′‐tetramethyl‐4,4′‐diaminediphenylmethane, α,α‐bis(4‐amino‐3,5‐dimethyl phenyl)‐3′‐trifluoromethylphenylmethane, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, 4‐(3′‐trifluoromethylphenyl)‐2,6‐bis(3′‐aminophenyl)pyridine, and 1,1‐bis(4′‐aminophenyl)‐1‐(3′‐trifluoromethylphenyl)‐2,2,2‐trifluoroethane]. The fluorinated poly(amide imide)s, prepared by a one‐step polycondensation procedure, had good solubility both in strong aprotic solvents, such as N‐methyl‐2‐pyrrolidinone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and cyclopentanone, and in common organic solvents, such as tetrahydrofuran and m‐cresol. Strong and flexible polymer films with tensile strengths of 84–99 MPa and ultimate elongation values of 6–9% were prepared by the casting of polymer solutions onto glass substrates, followed by thermal baking. The poly(amide imide) films exhibited high thermal stability, with glass‐transition temperatures of 257–266 °C and initial thermal decomposition temperatures of greater than 540 °C. The polymer films also had good dielectric properties, with dielectric constants of 3.26–3.52 and dissipation factors of 3.0–7.7 × 10?3, and acceptable electrical insulating properties. The balance of excellent solubility and thermal stability associated with good mechanical and electrical properties made the poly(amide imide)s potential candidates for practical applications in the microelectronics industry and other related fields. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1831–1840, 2003  相似文献   

3.
A novel dianhydride monomer, 3,6‐di[3′,5′‐bis(trifluoromethyl)phenyl]pyromellitic dianhydride (12FPMDA), was synthesized via a three‐step process: (1) the preparation of 3,5‐bis(trifluoromethyl)benzene boronic acid (6FBB) and 3,6‐dibromo‐1,2,4,5‐tetramethylbenzene (2B4MB) via Grignard and bromination reactions, respectively; (2) the Suzuki cross‐coupling reaction of 6FBB and 2B4MB, resulting in 3,6‐di[3′,5′‐bis(trifluoromethyl)phenyl]tetramethylbenzene (12F4MB); and (3) the oxidation and cyclodehydration of 12F4MB to afford 12FPMDA. 12FPMDA was then characterized by Fourier transform infrared (FTIR), 1H NMR, 19F NMR, elemental analysis, and a melting‐point apparatus, and it was used to prepare polyimides with aromatic diamines such as 1,1‐bis(4‐aminophenyl)‐2,2,2‐trifluoroethane and 4,4′‐diaminodiphenylether. Polyimides were synthesized via a two‐step process: (1) the preparation of poly(amic acid) in p‐chlorophenol with isoquinoline and (2) solution imidization at the reflux temperature for 12 h. They were designed to have molecular weights of 20,000 g/mol via off‐stoichiometry. The resulting polyimides were characterized by FTIR, NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis, and their solubility, solution viscosity, water absorption, coefficients of thermal expansion (CTEs), and dielectric constants were also evaluated. The polyimides exhibited excellent solubility even in acetone and toluene, high glass‐transition temperatures (>311 °C), good thermal stability (>518 °C in air), and well‐controlled molecular weights (19,000–21,000 g/mol). They also provided low CTEs (35–50 ppm/°C), water absorption (1.26–1.35 wt %), and dielectric constants (2.49–2.52). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4217–4227, 2002  相似文献   

4.
A novel fluorinated aromatic dianhydride, 4,4′‐[2,2,2‐trifluoro‐1‐(3‐trifluoromethyl‐phenyl)ethylidene]diphthalic anhydride (TFDA) was synthesized by coupling of 3′‐trifluoromethyl‐2,2,2‐trifluoroacetophenone with o‐xylene under the catalysis of trifluoromethanesulfonic acid, followed by oxidation of KMnO4 and dehydration. A series of fluorinated aromatic polyimides derived from the novel fluorinated aromatic dianhydride TFDA with various aromatic diamines, such as p‐phenylenediamine (p‐PDA), 4,4′‐oxydianiline (ODA), 1,4‐bis(4‐aminophenoxy)benzene (p‐APB), 1,3‐bis(4‐amino‐phenoxy)benzene (m‐APB), 4‐(4‐aminophenoxy)‐3‐trifluoromethylphenylamine (3FODA) and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene (6FAPB), were prepared by polycondensation procedure. All the fluorinated polyimides were soluble in many polar organic solvents such as NMP, DMAc, DMF, and m‐cresol, as well as some of low boiling point organic solvents such as CHCl3, THF, and acetone. Homogeneous and stable polyimide solutions with solid content as high as 35–40 wt % could be achieved, which were prepared by strong and flexible polyimide films or coatings. The polymer films have good thermal stability with the glass transition temperature of 232–322 °C, the temperature at 5% weight loss of 500–530 °C in nitrogen, and have outstanding mechanical properties with the tensile strengths of 80.5–133.2 MPa as well as elongations at breakage of 7.1–12.6%. It was also found that the polyimide films derived from TFDA and fluorinated aromatic diamines possess low dielectric constants of 2.75–3.02, a low dissipation factor in the range of 1.27–4.50 × 10?3, and low moisture absorptions <1.3%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4143–4152, 2004  相似文献   

5.
Novel sulfonated diamines bearing aromatic pendant groups, namely, 3,5‐diamino‐3′‐sulfo‐4′‐(4‐sulfophenoxy) benzophenone (DASSPB) and 3,5‐diamino‐3′‐sulfo‐4′‐(2,4‐disulfophenoxy) benzophenone (DASDSPB), were successfully synthesized. Novel side‐chain‐type sulfonated (co)polyimides (SPIs) were synthesized from these two diamines, 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA) and nonsulfonated diamines such as 4,4′‐bis(3‐aminophenoxy) phenyl sulfone (BAPPS). Tough and transparent membranes of SPIs with ion exchange capacity of 1.5–2.9 meq g?1 were prepared. They showed good solubility and high thermal stability up to 300 °C. They showed isotropic membrane swelling in water, which was different from the main‐chain‐type and sulfoalkoxy‐based side‐chain‐type SPIs. The relative humidity (RH) and temperature dependence of proton conductivity were examined. At low RH, the novel SPI membranes showed much higher conductivity than the sulfoalkoxy‐based SPIs. They showed comparable or even higher proton conductivity than Nafion 112 in water at 60 °C (>0.10 S cm?1). The membrane of NTDA‐DASDSPB/BAPPS (1/1)‐s displayed reasonably high proton conductivities of 0.05 and 0.30 S cm?1 at 50 and 100% RH, respectively, at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2862–2872, 2006  相似文献   

6.
Highly refractive and transparent polyimides (PIs) based on fluorene‐bridged and sulfur‐containing monomers have been developed. An aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), was polymerized with several fluorene‐containing diamines, including commercially available 9,9′‐bis(p‐aminophenyl)fluorene (APF), 9,9′‐bis[4‐(p‐aminophenoxy)phenyl]fluorene (OAPF), and newly synthesized 9,9′‐bis[4‐(p‐aminophenyl)sulfanylphenyl]fluorene (ASPF) to afford series A PIs. Meanwhile, series B PIs were obtained from a new dianhydride, 4,4′‐[(9H‐fluorene‐9‐ylidene)bis(p‐phenylsulfanyl)]diphthalic anhydride (FPSP) and two aromatic diamines, ASPF and 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] (3SDA) via a two‐step polycondensation procedure. The PIs exhibit good thermal stabilities, such as relatively high glass transition temperatures in the range of 220–270 °C and high initial thermal decomposition temperatures (T10%) exceeding 490 °C. The 9,9′‐disubstituted fluorene moieties endow the PI films with good optical transparency. The optical transmittances of the PI films at 450 nm are all higher than 80% for the thickness of about 10 μm. Furthermore, the highly aromatic fluorene moiety and flexible thioether linkages in the molecular chains of the PIs provide them with high refractive indices of 1.6951–1.7258 and small birefringence of 0.0056–0.0070. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1510–1520, 2008  相似文献   

7.
A series of poly(amide‐imide)s were prepared using a new monomer, 1,3‐bis(trimellitimido)‐2,4,6‐trimethyl benzene (BTB), with four different diamines: 1,4‐phenylene diamine (PDA), 2,4‐diamino mesitylene (DAM), 2,2′‐dimethyl‐4,4′‐diamino biphenyl (DMDB), and 2,2′‐bis(trifluoromethyl)‐4,4′‐diamino biphenyl (TFDB). They were prepared by the condensation method in N‐methyl‐2‐pyrrolidinone (NMP) solvent using triphenyl phosphate and pyridine as condensing agents. The synthesized poly(amide‐imide)s were characterized by Fourier transform infrared and 1H NMR techniques. Films were prepared and characterized using DSC, thermogravimetric analysis (TGA), a prism coupler, and a film dielectric property analyzer. DSC measurement showed that the glass‐transition temperatures of the polymers were in the range of 259–327 °C. TGA analysis showed 5% weight loss, in the range of 472–514 °C. The refractive index varied from 1.6004 to 1.6586 in the following increasing order: BTB‐TFBM < BTB‐DAM < BTB‐DMDB < BTB‐PDA. For the poly(amide‐imide) films, the birefringence varied in the range of 0.0319–0.0580, in the following increasing order: BTB‐DAM < BTB‐TFBM < BTB‐DMDB < BTB‐PDA. The capacitance method showed that the dielectric constant of poly(amide‐imide) varied with the diamine structure; no difference was found by the optical method. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 137–143, 2004  相似文献   

8.
Two novel diamine monomers, 1,4‐bis (4‐aminophenoxy)‐2‐[(3′,5′‐ditrifluoromethyl)phenyl]benzene and 1,4‐bis [2′‐cyano‐3′(4″‐amino phenoxy)phenoxy]‐2‐[(3′,5′‐ditrifluoromethyl)phenyl] benzene, were synthesized from (3,5‐ditrifluoromethyl)phenylhydroquinone. A series of ditrifluoromethylated aromatic polyimides derived from the diamines were prepared through a typical two‐step polymerization method. These polyimides had a high thermal stability, and the temperatures at 10% weight loss were above 507 °C in nitrogen. Most of the polymers showed good solubility in anhydrated 1‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, chloroform, and tetrahydrofuran at room temperature. All the polymers formed transparent, strong, and flexible films with tensile strengths of 63.6–95.8 MPa, elongations at break of 5–10%, and Young's moduli of 2.38–2.96 GPa. The dielectric constants estimated from the average refractive indices are 2.69–2.89. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3018–3029, 2005  相似文献   

9.
A series of photocrosslinkable, side‐chain, second‐order nonlinear optical (NLO) poly(ester imide)s (PEIs) based on a chromophore‐containing dianhydride, 2,2′‐{4‐[(4‐nitrophenyl)‐azo]phenyl}iminobis(ethyl benzene‐1,2‐dicarboxylic acid anhydride‐4‐carboxylate), benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride, and 4,4′‐diamino‐3,3′‐dimethyl diphenylmethane were prepared. The resulting PEIs exhibited many useful physical characteristics, such as good organosolubility, excellent film‐forming properties, high glass‐transition temperatures (186–229 °C), and high thermal decomposition temperatures. The electrooptic coefficient value of PEI3 at 650 nm was 11.5 pm/V, and high long‐term stability of the NLO chromophore alignment in the poled PEI3 film at 120 °C was observed. The temporal stability of the dipole orientation at 150 °C was further enhanced by ultraviolet irradiation because of photocrosslinking. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 303–312, 2003  相似文献   

10.
A novel diamine, bis‐(3‐aminophenyl)‐4‐(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), containing phosphine oxide and fluorine moieties was prepared via the Grignard reaction from an intermediate, 4‐(trifluoromethyl)phenyl diphenyl phosphine oxide, that was synthesized from diphenylphosphinic chloride and 4‐(trifluoromethyl)bromobenzene, followed by nitration and reduction. The monomer was characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR, 19F NMR spectroscopies; elemental analysis; melting point measurements; and titration and was used to prepare polyimides with a number of dianhydrides such as pyromellitic dianhydride (PMDA), 5,5′‐[2,2,2‐trifluoro‐1‐(trifluoromethyl)ethyliden]‐bis‐1,3‐isobenzofuranedione (6FDA), 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐oxydiphthalic dianhydride (ODPA). Polyimides were synthesized via a conventional two‐step route; preparation of polyamic acids, followed by solution imidization, and the molecular weight were controlled to 20,000 g/mol. Resulting polyimides were characterized by FTIR, NMR, DSC, and intrinsic viscosity measurements. Refractive‐index, dielectric constant, and adhesive properties were also determined. The properties of polyimides were compared with those of polyimides prepared from 1,1‐bis‐(4‐aminophenyl)‐1‐phenyl‐2,2,2‐trifluoroethane (3FDAm) and bis‐(3‐aminophenyl) phenyl phosphine oxide (mDAPPO). The polyimides prepared from mDA3FPPO provided high glass‐transition temperatures (248–311 °C), good thermal stability, excellent solubility, low birefringence (0.0030–0.0036), low dielectric constants (2.9–3.1), and excellent adhesive properties with Cu foils (107 g/mm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3335–3347, 2001  相似文献   

11.
A novel side‐chain liquid‐crystalline polyimide (SLCPI) was prepared via copolycondensation from 3,5‐diamino‐benzonic‐4′‐biphenyl ester, 4,4′‐diamino‐ biphenyl ether, and 3,3′,4,4′‐oxydiphthalic dianhydride. The energy‐minimized structure and liquid crystallinity of SLCPI were investigated by molecular modeling, differential scanning calorimetry (DSC), wide‐angle X‐ray scattering, and polarized optical microscopy, respectively. The results indicated that this polyimide (PI) with side‐chain mesogenic units exhibited a nematic NI phase. Because of the in situ self‐reinforcement of side‐chain mesogenic units, the improved tensile strength and modulus of PI films reached 270% and 300%, respectively. The coefficient of thermal expansion of films decreased by 40%. DSC and thermogravimetric analyses indicated that the phase‐transition temperature of SLCPI was above 240 °C, and the 5% weight‐loss temperature was above 520 °C. Moreover, copolycondensation of two diamines with dianhydride and incorporation of pendent mesogenic units diminished the regularity and symmetry of main chains; as a result, SLCPI exhibits good film processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 554–559, 2003  相似文献   

12.
To investigate the position and amount of the CF3 group affecting the coloration of polyimides (PIs), we prepared 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]hexafluoropropane ( 2 ) with four CF3 groups with 2‐chloro‐5‐nitrobenzotrifluoride and 2,2‐bis(4‐hydroxyphenol)hexafluoropropane. A series of soluble and light‐colored fluorinated PIs ( 5 ) were synthesized from 2 and various aromatic dianhydrides ( 3a – 3f ). 5a – 5f had inherent viscosities ranging from 0.80 to 1.19 dL/g and were soluble in amide polar solvents and even in less polar solvents. The glass‐transition temperatures of 5 were 221–265 °C, and the 10% weight‐loss temperatures were above 493 °C. Their films had cutoff wavelengths between 343 and 390 nm, b* values (a yellowness index) ranging from 5 to 41, dielectric constants of 2.68–3.01 (1 MHz), and moisture absorptions of 0.03–0.29 wt %. In a comparison of the PI series 6 – 8 based on 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane, 2,2‐bis[4‐(4‐amino‐2‐trifluoromethylphenoxy)phenyl]propane, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane, we found that the CF3 group close to the imide group was more effective in lowering the color; this means that CF3 of 5 , 7 , and 8f was more effective than that of 6c . The color intensity of the four PI series was lowered in the following order: 5 > 7 > 6 > 8 . The PI 5f , synthesized from diamine 2 and 4,4′‐hexafluoroisopropylidenediphthalic anhydride, had six CF3 groups in a repeated segment, so it exhibited the lightest color among the four series. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 922–938, 2003  相似文献   

13.
The synthesis of a new diamine monomer, Nn‐butyl 3,12‐diamino‐5,6,9,10‐tetrahydro[5]helicene‐7,8‐dicarboxylic imide (4), that contains a helically locked, U‐shaped 4′,4″‐o‐terphenyl moiety is described. The monomer was polymerized with 3,3′,4,4′‐oxydiphthalic dianhydride and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane to form a series of copoly(ether imide)s (5a–e). The incorporation of 4 into the poly(ether imide)s varied the glass‐transition temperature of the copolymers of which it was a part. There was a tendency to form macrocyclic materials at higher molar percentages of 4 during polymerization. The fluorescence of all the copoly(ether imide)s gradually decreased as the content derived from monomer 4 increased in the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 758–763, 2000  相似文献   

14.
Three series of aromatic polyimides with 4‐(carbazol‐9‐yl)triphenylamine moieties were prepared from the polycondensation reactions of 4,4′‐diamino‐4″‐(carbazol‐9‐yl) triphenylamine (1), 4,4′‐diamino‐4″‐(3,6‐di‐tert‐butylcarbazol‐9‐yl)triphenylamine (t‐Bu‐1), and 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl)triphenylamine (MeO‐1), respectively, with various commercially available tetracarboxylic dianhydrides. In addition to high thermal stability and good film‐forming ability, the resulting polyimides exhibited an ambipolar electrochromic behavior. The polyimides based on t‐Bu‐1 and MeO‐1 revealed higher redox‐stability and enhanced electrochromic performance than the corresponding ones based on 1 because the active sites of their carbazole units are blocked with bulky t‐butyl or electron‐donating methoxy groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1172–1184  相似文献   

15.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Main‐chain liquid‐crystalline polyurethanes were synthesized based on a high aspect ratio mesogenic diol (4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐benzoic acid 4‐{[4‐(6‐hydroxyhexyloxy)‐phenylimino]‐methyl}‐phenyl ester) as a chain extender; polycaprolactone (PCL) diol soft segments of different number‐average molecular weights (530, 1250, or 2000); and different diisocyanates, including 1,4‐hexamethylene diisocyanate (HMDI), 4,4′‐methylene bis(cyclohexyl isocyanate) (H12MDI), and 4,4′‐methylene bis(phenyl isocyanate) (MDI). The structure of the polymers was confirmed with Fourier transform infrared spectroscopy, and differential scanning calorimetry and polarizing microscopy measurements were carried out to examine the liquid‐crystalline and thermal properties of the polyurethanes, respectively. The mesogenic diol was partially replaced with 20–50 mol % PCL. A 20 mol % mesogen content was sufficient to impart a liquid crystalline property to all the polymers. The partial replacement of the mesogenic diol with PCL of various molecular weights, as well as the various diisocyanates, influenced the phase transitions and the occurrence of mesophase textures. Characteristic liquid‐crystalline textures were observed when a sufficient content of the mesogenic diol was present. Depending on the flexible spacer length and the mesogenic content, grained and threadlike textures were obtained for the HMDI and H12MDI series polymers, whereas the polyurethanes prepared from MDI showed only grained textures for all the compositions. The polymers formed brittle films and could not be subjected to tensile tests. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1527–1538, 2002  相似文献   

17.
Two series of polyimides I – II with methyl‐substituted triphenylamine units were prepared from the diamines, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 1 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ), and two commercially available tetracarboxylic dianhydrides via a conventional two‐step chemical imidization. All the polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass transition temperatures (266–340 °C) and high char yields (higher than 49% at 800 °C in nitrogen). The polymer films showed reversible electrochemistry/electrochromism accompanied by a color change from neutral pale yellow to green oxidized form with good coloration efficiency, switching time, and stability. The CO2 permeability coefficients (PCO2) and permeability selectivity (PCO2/PCH4) for these polyimide membranes were in the range of 34.1–229.2 barrer and 21.3–28.9, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
A novel fluorinated diamine monomer based on 4,4′‐biphenol was synthesized via a straightforward, high‐yielding two‐step procedure. 4,4′‐Biphenol was reacted with 2‐chloro‐5‐nitrobenzotrifluoride in the presence of potassium carbonate to yield the intermediate dinitro compound, which was subsequently reduced to afford the fluorinated diamine, 4,4′‐bis(4‐amino‐3‐trifluoromethylphenoxy)biphenyl. A series of organosoluble fluorinated polyimides were prepared from the diamine with various aromatic dianhydrides via a conventional two‐step thermal imidization method. All polyimides were soluble in strong dipolar solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide. The polyimides showed excellent thermal and thermooxidative stability and good mechanical properties. No significant weight loss was observed below a temperature of 520 °C in nitrogen or in air, and the glass‐transition temperatures ranged from 247 to 313 °C. Low dielectric constants (2.57–3.65 at 10 kHz), low moisture absorption (0.1–0.7 wt %), and low color intensity were also observed. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 524–534, 2002; DOI 10.1002/pola.10113  相似文献   

19.
Block copolyimides based on aromatic dianhydrides and diamines copolymerized with diamino room temperature ionic liquid (RTIL) monomers were synthesized over a range of compositions. Specifically, two diamino RTILs, 1,3‐di(3‐aminopropyl) imidazolium bis[(trifluoromethyl)sulfonyl] imide ([DAPIM] [NTf2]) and 1,12‐di[3‐(3‐aminopropyl) imidazolium] dodecane bis[(trifluoromethyl) sulfonyl] imide ([C12 (DAPIM)2] [NTf2]2) were synthesized using a Boc protection method. The two RTILs were reacted with 2,2‐bis(3,4‐carboxylphenyl) hexafluoropropane dianhydride (6FDA) to produce 6FDA‐RTILs oligomers that formed the RTIL component for the block copolyimides. The oligomers were reacted with 6FDA and m‐phenylenediamine (MDA) at oligomer concentration from 6.5 to 25.8 mol % to form block copolyimides. Increasing the concentration of the 6FDA‐RTIL oligomer in the block copolyimides resulted in a decrease in the thermal degradation temperature, glass transition temperature and an increase in the density. The gas permeability of the RTIL based block copolyimide decreased but the ideal permeability selectivity for CO2/CH4 gas pair increased relative to the pure 6FDA‐MDA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4036–4046, 2010  相似文献   

20.
Two types of novel fluorinated diimide‐diacid monomers—[2,2′‐(4,4′‐(3′‐methylbiphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (III) and [2,2′‐(4,4′‐(3′‐(trifluoromethyl)biphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (IV)—were respectively designed and prepared by the condensation of diamines I and II with two molar equivalents of trimellitic anhydride. From both diimide‐diacids, two series of novel poly(amide‐imide)s (PAIs) (IIIa–IIIe and IVa–IVe) bearing different pendant groups were prepared by direct polymerization with various aromatic diamines (a–e). All the PAIs had a high glass transition temperatures (Tgs, 232–265 °C), excellent thermal stability (exhibiting only 5% weight loss at 493–542 °C under nitrogen) and good solubility in various organic solvents due to the introduction of the bulky pendant groups. The cast films of these PAIs (80–90 μm) had good optical transparency (73–81% at 450 nm, 85–88% at 550 nm and 87–89% at 800 nm) and low dielectric constants (2.65–2.98 at 1 MHz). The spin‐coated films of these PAIs presented a minimum birefringence value as low as 0.0077–0.0143 at 650 nm and low optical absorption at the near‐infrared optical communication wavelengths of 1310 and 1550 nm. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3243–3252  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号