首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, [Mn2(μ‐O)(C6H3NO3)2(C5H5N)4]·H2O, was isolated from the reaction of 2,6‐pyridine­di­carboxylic acid with [Mn12O12(CH3COO)16(H2O)4] in pyridine. The dimanganese complex has twofold symmetry; the MnIII atoms are bridged by one oxo and two amidate ligands and show compressed octahedral Jahn–Teller distortion. The molecular packing comprises a three‐dimensional structure constructed by means of extensive intermolecular interactions, including three kinds of hydrogen bonds and π–π interactions.  相似文献   

2.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

3.
Two manganese(II) coordination polymers, namely, [Mn1.5(BCB)(bpy)1.5(H2O)]n ( 1 ), and [Mn(HBCB)(bibp)2(H2O)] ( 2 ), were assembled from the mixed ligands of the flexible tripodal ligand of 3,5‐bis(2‐carboxylphenoxy)benzoic acid (H3BCB) and two rigid N‐donors [bpy = 4,4′‐bipyridine, and bibp = 4,4′‐bis(imidazolyl)biphenyl]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectra, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Structural analysis reveals that complex 1 is a 3D (3,4,6)‐connected {5 · 62}2{56 · 64 · 7 · 82 · 92}{64 · 8 · 9} net based on two kinds of inorganic nodes of dinuclear {Mn2(COO)2} SBUs and Mn(2) ions. Complex 2 is a hydrogen bonds based 3D supramolecule with 6‐connected {412 · 63}‐ pcu net. Besides, the variable‐temperature susceptibilities of 1 and 2 were investigated.  相似文献   

4.
The zinc(II) coordination polymers [Zn(Htatb)(2,2′‐bipy) · (NMP) · H2O] ( 1 ) and [Zn3(tatb)2(2,2′‐bipy)3 · H2O] ( 2 ) (H3tatb = 4,4′,4′′‐s‐triazine‐2,4,6‐triyl‐tribenzoic acid; 2,2′‐bipy = 2,2′‐bipyridyl, NMP = N‐methyl‐2‐pyrrolidon), were synthesized hydrothermally, and characterized by infrared spectroscopy (IR), powder X‐ray diffraction (PXRD), and single‐crystal X‐ray diffraction. Both compounds 1 and 2 possess expectant low dimensional coordination structures, which further connected into interesting 3D networks by hydrogen bond and strong π–π interactions. Moreover, the thermal stabilities and fluorescent properties of 1 and 2 were investigated.  相似文献   

5.
Four metal‐organic frameworks (MOFs), {[Mn3.5L(OH)(HCOO)4(DMF)] · H2O} ( 1 ), {[In2.5L2O(OH)1.5(H2O)2] · DMF · CH3CN · 2H2O} ( 2 ), {[Pb4L3O(DMA)] · CH3CN} ( 3 ), and {[LaL(NO3)(DMF)2] · 2H2O} ( 4 ) were synthesized by utilizing the ligand 2,2′,6,6′‐tetramethoxy‐4,4′‐biphenyldicarboxylic acid (H2L) via solvothermal methods. All MOFs were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, thermogravimetric analysis, and infrared spectroscopy. In 1 , the Mn2+ ions are interconnected by formic groups in situ produced via DMF decomposition to form a rare 2D macrocyclic plane, which is further linked by L2– to construct the final 3D network. In 2 , 1D zip‐like infinite chain is formed and then interconnected to build the 3D framework. In 3 , a [Pb64‐O)2(O2C)10(DMA)2] cluster with a centrosymmetric [Pb64‐O)2]8+ octahedral core is formed in the 3D structure. In 4 , the La3+ ions are connected with each other through carboxylate groups of L2– to generate 1D zigzag chain, which is further linked by L2– to construct a 3D network with sra topology. Solid photoluminescence properties of 3 and 4 were also investigated.  相似文献   

6.
The single crystal X‐ray analysis of a novel thiophene‐2,5‐dicarboxylic acid (H2Tda) Manganese(II) coordination polymer, {Mn23‐Tda)2(μ‐H2O)(H2O)2(bipy)]·DMF}n, shows two different types of Mn2+‐ions with environment of Mn1O6 and Mn2O4N2, and the complex is a two‐dimensional polymer as a result of bridging (Tda)2? ligands and by connecting the carboxylate‐ and water‐bridged {Mn2(μ‐Tda)2(μ‐H2O)} nodes.  相似文献   

7.
The new MOF Ga‐MIL‐53‐PDA [Ga(OH)(O2C‐C8H8‐CO2)] · H2O ( 1 ) was synthesized by a hydrothermal reaction of gallium nitrate, 1,4‐phenylenediacetic acid (H2PDA) and sodium hydroxide at 100 °C for 24 h. The product is a structural analogue of the archetypical MIL‐53 framework. Its crystal structure was determined by Rietveld refinement of powder X‐ray diffraction (PXRD) data. Furthermore 1,4‐phenylenedipropionic acid (H2PDP) was employed for further synthesis, which resulted in the dense layered coordination polymers [Ga2(OH)4(O2C‐C10H12‐CO2)] ( 2 ) and [Ga(OH)(O2C‐C10H12‐CO2)] ( 3 ), for which accurate structural models could be established. All compounds were fully characterized and tested regarding potential breathing behavior. Most remarkably, Ga‐MIL‐53‐PDA showed a subtle flexibility upon de/‐rehydration also confirming its porosity, but no drastic structural changes were observed.  相似文献   

8.
9.
Two one‐dimensional (1‐D) chain manganese‐nitroxide complexes {[Mn(NIT4Py)2(ip)(H2O)2]·4H2O}n ( 1 ) and [Mn(IM4Py)2(ip)(H2O)2]n ( 2 ) (NIT4Py = 2‐(4′‐pyridinyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, IM4Py = 2‐(4′‐pyridinyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl and ip = isophthalate anion) have been synthesized and characterized by elemental analyses, IR spectrum and electronic absorption spectra. Complex 1 was structurally characterized and it crystallizes in neutral 1‐D chains where MnII nitroxide units [Mn(NIT4Py)2(H2O)2] are linked by isophthalate anions. The magnetic measurements show that complex 1 exhibits antiferromagnetic couplings, while complex 2 exhibits ferromagnetic interactions between the MnII ion and the nitroxide radicals.  相似文献   

10.
The imidazole‐based dicarboxylate ligand 2‐(4‐(pyridin‐4‐yl)phenyl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyPhIDC), was synthesized and its coordination chemistry was studied. Solvothermal reactions of CaII, MnII, CoII, and NiII ions with H3PyPhIDC produced four coordination polymers, [Ca(μ3‐HPyPhIDC)(H2O)2]n ( 1 ), {[M32‐H2PyPhIDC)23‐HPyPhIDC)26(H2O)2] · 6H2O}n [M = Mn ( 2 ), Co ( 3 )], and {[Ni(μ3‐HPyPhIDC)(H2O)] · H2O}n ( 4 ). Compounds 1 – 4 were analyzed by IR spectroscopy, elemental analyses, and single‐crystal and powder X‐ray diffraction. Compound 1 displays a one‐dimensional (1D) infinite chain. Compounds 2 and 3 are of similar structure, showing 2D network structures with a (4,4) topology based on trinuclear clusters. Compound 4 has another type of 2D network structure with a 3‐connected (4.82) topology. The results revealed that the structural diversity is attributed to the coordination numbers and geometries of metal ions as well as the coordination modes and conformations of H3PyPhIDC. Moreover, the thermogravimetric analyses of all the compounds as well as luminescence properties of the H3PyPhIDC ligand and compound 1 were also studied.  相似文献   

11.
Abstract. The 3D cobalt(II) coordination polymers [Co1.5(HDDB)(1,4‐bib)1.5(H2O)]n ( 1 ), and {[Co2(DDB)(1,3‐bib)22‐H2O)] · H2O}n ( 2 ) were assembled by mixed‐ligand synthetic strategy [H4DDB = 1,3‐bis(2,4‐dicarboxyphenyl) benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and 1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Single X‐ray diffraction analysis reveals that complex 1 is an interestingly 3D (3,3.6)‐connected (63)4(65 · 88 · 102) net, and complex 2 is an unprecedented dinuclear [Co2(COO)(μ2‐H2O)] SBUs based 3D (3,6)‐connected (3 · 6 · 7)(32 · 43 · 54 · 63 · 7 · 82) net. Additionally, the magnetic properties of 2 were investigated.  相似文献   

12.
Four metal‐organic coordination polymers [Co2(L)3(nipa)2]·6H2O ( 1 ), [Cd(L)(nipa)]·3H2O ( 2 ), [Co(L) (Hoxba)2] ( 3 ) and [Ni2(L)2(oxba)2(H2O)]·1.5L·3H2O ( 4 ) were synthesized by reactions of the corresponding metal(II) salts with the rigid ligand 1,4‐bis(1H‐imidazol‐4‐yl)benzene (L) and different derivatives of 5‐nitroisophthalic acid (H2nipa) and 4,4′‐oxybis(benzoic acid) (H2oxba), respectively. The structures of the complexes were characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction. Complexes 1 and 3 have the same one‐dimensional (1D) chain while 2 is a 6‐connected twofold interpenetrating three‐dimensional (3D) network with α ‐Po 412·63 topology based on the binuclear CdII subunits. Compound 4 features a puckered two‐dimensional (2D) (4,4) network, and the large voids of the packing 2D nets have accommodated the uncoordinated L guest molecules. An abundant of N–H···O, O–H···O and C–H···O hydrogen bonding interactions exist in complexes 1–4 , which contributes to stabilize the crystal structure and extend the low‐dimensional entities into high‐dimensional frameworks. Lastly, the photoluminiscent properties of compounds 2 were also investigated.  相似文献   

13.
The MnII‐based porous metal‐organic framework, [Mn3(btca)2(HCOO)(μ3‐OH)(H2O)2] · 2DMF ( 1 ) (H2btca = benzotriazole‐5‐carboxylate acid), was prepared by the solvothermal reaction of Mn(CH3COO)2 · 4H2O and H2btca, which was characterized by infrared spectroscopy, thermogravimetric analyses, and X‐ray crystallographic study. 1 exhibits 3D framework with 1D rectangle channels constructed by the strip‐shaped chains containing [Mn53‐OH)2(btca)4] pentaclusters subunits. Furthermore, the magnetic measures show that 1 exhibits weak ferromagnetic behavior at low temperature.  相似文献   

14.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

15.
Divalent metal coordination polymers containing the rigid 2,5‐thiophenedicarboxylate (tdc) ligand and the conformationally flexible dipyridylamide ligand bis(4‐pyridylformyl)homopiperazine (bpfh) show different layer topologies and chirality. As determined by single‐crystal X‐ray diffraction, {[Cd(tdc)(bpfh)(H2O)] · 3H2O}n ( 1 ) shows a twofold parallel interpenetrated centrosymmetric (4,4) layered grid structure. {[Zn(tdc)(bpfh)] · H2O}n ( 2 ) exhibits a similar system of twofold interpenetrated (4,4) grid‐like layers, but in contrast to 1 , it crystallizes in an acentric space group. {[Ni2(tdc)2(bpfh)2(H2O)] · 2H2O}n ( 3 ) possesses {Ni2(μ‐H2O)(OCO)2} dimeric units connected into a doubled layer motif by the full span of the tdc and bpfh ligands. Weak antiferromagnetic coupling is observed within the dimeric units in 3 [g = 2.172(6) and J = –0.79(1) cm–1]. Compounds 1 and 2 undergo blue‐violet fluorescence upon ultraviolet irradiation; the cadmium derivative 1 shows potential as a sensor for the solution‐phase detection of nitrobenzene although coordination polymer exfoliation likely occurs. Thermal decomposition behavior of the three new phases is also discussed.  相似文献   

16.
4‐Hydroxypyridine‐2,6‐dicarboxylic acid (chelidamic acid, hypydc[H]H2) reacts with MnCl2·2H2O in the presence of piperazine in water to afford the title complex, {[Mn3(C7H2NO5)2(H2O)8]·3H2O}n or {[Mn3(hypydc)2(H2O)8]·3H2O}n. This compound is a one‐dimensional coordination polymer, with the twofold symmetric repeat unit containing three metal centres. Two different coordination geometries are observed for the two independent MnII metal centres, viz. a distorted pentagonal bipyramid and a distorted octahedron. The 4‐oxidopyridine‐2,6‐dicarboxylate anions and two of the water molecules act as bridging ligands. The zigzag‐like geometry of the coordination polymer is stabilized by hydrogen bonds. O—H...O and C—H...O hydrogen bonds and water clusters consolidate the three‐dimensional network structure.  相似文献   

17.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

18.
The 1‐azonia‐2‐boratanaphthalenes (NH)(BX)C8H6 can be synthesized from 2‐aminostyrene and the dihaloboranes XBHal2 ( 1 ‐ 4 : X = Cl, Br, iPr, tBu). Further derivatives (NH)(BX)C8H6 are obtained from 1 by replacing Cl by alkoxy or alkyl groups [ 5 ‐ 8 : X = OMe, OtBu, Me, (CH2)3NMe2]. The hydrolysis of 1 gives a mixture of the bis(azoniaboratanaphthyl) oxide [(NH)BC8H6]2O ( 9 ) and the hydroxy derivative (NH)[B(OH)]C8H6 ( 10 ). The diboryl oxide 9 crystallizes in the space group C2/c. The lithiation of 4 at the nitrogen atom gives [NLi(tmen)](BtBu)C8H6 ( 11 ), which upon reaction with the diborane(4) B2Cl2(NMe2)2 yields the 1, 2‐bis(azoniaboratanaphthyl)diborane B2[N(BtBu)C8H6]2(NMe2)2 ( 12 ). The 2‐chloro‐1‐methyl‐4‐phenyl derivative (NMe)(BCl)C8H5Ph ( 13 ) of the parent (NH)(BH)C8H6 can be synthesized from the aminoborane BCl2(NMePh) and phenylethyne. Substitution of Cl in 13 gives the derivatives (NMe)(BX)C8H5Ph [ 14 ‐ 20 : X = N(SiMe3)2, Me, Et, iBu, tBu, CH2SiMe3, Ph] and the reaction of 13 with Li2O affords the bis(azoniaboratanaphthyl) oxide [(NMe)BC8H5Ph]2O ( 21 ). The reaction of 16 or 19 with [(MeCN)3Cr(CO)3] yields the complexes [{(NMe)(BX)C8H5Ph}Cr(CO)3] ( 22 , 23 : X = Et, CH2SiMe3), in which the chromium atom is hexahapto bound to the homoarene part of 16 or 19 , respectively. The complex 23 crystallizes in the space group P21/c. Upon reaction of the phenols para‐C6H4R(OH) with the aryldichloroboranes ArBCl2 and subsequent condensation of the products with phenylethyne, the 1‐oxonia‐2‐boratanaphthalenes O(BAr)C8H4RPh with R in position 6 and Ph in position 4 are formed ( 24 ‐ 26 : Ar = Ph, R = H, Me, OMe; 27 ‐ 29 : Ar = C6F5, R = H, Me, OMe). The azoniaboratanaphthalenes 1 ‐ 23 were characterized by NMR methods.  相似文献   

19.
The reactions of anthraquinone‐2,6‐disulfonic acid disodium salt (Na2a‐2,6‐dad) with CuII, MnII, and ZnII with 1,10‐phenanthroline (phen) or 2,2′‐dipyridyl (bipy) under hydrothermal conditions formed two or three‐dimensional supramolecules of stoichiometries [Cu(a‐2,6‐dad)(phen)(H2O)3](H2O)4 ( 1 ), [Mn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 2 ), and [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ), which were synthesized and characterized. The arrangement around each metal atom is distorted octahedral. The ligands in all the compounds are engaged in intermolecular hydrogen bonding leading to the formation of hydrogen‐bonded networks, the compounds show novel π–π stacking interactions. Photoluminescence measurements indicate that the compound [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ) shows strong blue luminescence in the solid state at room temperature.  相似文献   

20.
Two manganese(II) bipyridine carboxylate complexes, [(bipy)2MnII(μ‐C2H5CO2)2MnII(bipy)2}2](ClO4)2 ( 1 ), and [MnII(ClCH2CO2)(H2O)(bipy)2]ClO4 · H2O ( 2 ) were prepared. 1 crystallizes in the triclinic space group P 1 with a = 8.604(3), b = 12.062(3), c = 13.471(3) Å, α = 112.47(2), β = 93.86(2), γ = 92.87(3)°, V = 1211.1(6) Å3 and Z = 1. In the dimeric, cationic complex with a crystallographic center of symmetry two 2,2′‐bipyridine molecules chelate each manganese atom. These two metal fragments are then bridged by two propionato groups in a syn‐anti conformation. The Mn…Mn distance is 4.653 Å. 2 crystallizes in the monoclinic space group P21/c with a = 9.042(1), b = 13.891(1), c = 21.022(3) Å, β = 102.00(1)°, V = 2569.3(5) Å3 and Z = 4. 2  is a monomeric cationic complex in which two bipyridine ligands chelate the manganese atom in a cis fashion. A chloroacetato and an aqua ligand complete the six‐coordination. Only in 2 is the intermolecular packing controlled by weak π‐stacking besides C–H…π contacts between the bipyridine ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号