首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We extend previous work on standard two-parameter Jordan partitions by Barry (Commun Algebra 43:4231–4246, 2015) to three parameters. Let \(J_r\) denote an \(r \times r\) matrix with minimal polynomial \((t-1)^r\) over a field F of characteristic p. For positive integers \(n_1\), \(n_2\), and \(n_3\) satisfying \(n_1 \le n_2 \le n_3\), the Jordan canonical form of the \(n_1 n_2 n_3 \times n_1 n_2 n_3\) matrix \(J_{n_1} \otimes J_{n_2} \otimes J_{n_3}\) has the form \(J_{\lambda _1} \oplus J_{\lambda _2} \oplus \cdots \oplus J_{\lambda _m}\) where \(\lambda _1 \ge \lambda _2 \ge \cdots \ge \lambda _m>0\) and \(\sum _{i=1}^m \lambda _i=n_1 n_2 n_3\). The partition \(\lambda (n_1,n_2,n_3:p)=(\lambda _1, \lambda _2,\ldots , \lambda _m)\) of \(n_1 n_2 n_3\), which depends on \(n_1\), \(n_2\), \(n_3\), and p, will be called a Jordan partition. We will define what we mean by a standard Jordan partition and give necessary and sufficient conditions for its existence.  相似文献   

2.
Let A be an ordered Banach algebra with a unit \(\mathbf{e}\) and a cone \(A^+\). An element p of A is said to be an order idempotent if \(p^2 = p\) and \(0 \le p\le \mathbf{e}\). An element \(a\in A^+\) is said to be irreducible if the relation \((\mathbf{e}-p)ap = 0\), where p is an order idempotent, implies \(p = 0\) or \(p = \mathbf{e}\). For an arbitrary element a of A the peripheral spectrum \(\sigma _\mathrm{per}(a)\) of a is the set \(\sigma _\mathrm{per}(a) = \{\lambda \in \sigma (a):|\lambda | = r(a)\}\), where \(\sigma (a)\) is the spectrum of a and r(a) is the spectral radius of a. We investigate properties of the peripheral spectrum of an irreducible element a. Conditions under which \(\sigma _\mathrm{per}(a)\) contains or coincides with \(r(a)H_m\), where \(H_m\) is the group of all \(m^\mathrm{th}\) roots of unity, and the spectrum \(\sigma (a)\) is invariant under rotation by the angle \(\frac{2\pi }{m}\) for some \(m\in {\mathbb N}\), are given. The correlation between these results and the existence of a cyclic form of a is considered. The conditions under which a is primitive, i.e., \(\sigma _\mathrm{per}(a) = \{r(a)\}\), are studied. The necessary assumptions on the algebra A which imply the validity of these results, are discussed. In particular, the Lotz–Schaefer axiom is introduced and finite-rank elements of A are defined. Other approaches to the notions of irreducibility and primitivity are discussed. Conditions under which the inequalities \(0 \le b < a\) imply \(r(b) < r(a)\) are studied. The closedness of the center \(A_\mathbf{e}\), i.e., of the order ideal generated by \(\mathbf{e}\) in A, is proved.  相似文献   

3.
Let \(k\ge 1\) and \(n_1,\ldots ,n_k\ge 1\) be some integers. Let \(S(n_1,\ldots ,n_k)\) be a tree T such that T has a vertex v of degree k and \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1},\ldots ,P_{n_k}\), that is \(T{\setminus } v\cong P_{n_1}\cup \cdots \cup P_{n_k}\) so that every neighbor of v in T has degree one or two. The tree \(S(n_1,\ldots ,n_k)\) is called starlike tree, a tree with exactly one vertex of degree greater than two, if \(k\ge 3\). In this paper we obtain the eigenvalues of starlike trees. We find some bounds for the largest eigenvalue (for the spectral radius) of starlike trees. In particular we prove that if \(k\ge 4\) and \(n_1,\ldots ,n_k\ge 2\), then \(\frac{k-1}{\sqrt{k-2}}<\lambda _1(S(n_1,\ldots ,n_k))<\frac{k}{\sqrt{k-1}}\), where \(\lambda _1(T)\) is the largest eigenvalue of T. Finally we characterize all starlike trees that all of whose eigenvalues are in the interval \((-2,2)\).  相似文献   

4.
Let A be a 0-sectorial operator with a bounded \(H^\infty (\Sigma _\sigma )\)-calculus for some \(\sigma \in (0,\pi ),\) e.g. a Laplace type operator on \(L^p(\Omega ),\, 1< p < \infty ,\) where \(\Omega \) is a manifold or a graph. We show that A has a \(\mathcal {H}^\alpha _2(\mathbb {R}_+)\) Hörmander functional calculus if and only if certain operator families derived from the resolvent \((\lambda - A)^{-1},\) the semigroup \(e^{-zA},\) the wave operators \(e^{itA}\) or the imaginary powers \(A^{it}\) of A are R-bounded in an \(L^2\)-averaged sense. If X is an \(L^p(\Omega )\) space with \(1 \le p < \infty \), R-boundedness reduces to well-known estimates of square sums.  相似文献   

5.
Let \(\Gamma \) denote a bipartite distance-regular graph with vertex set X, diameter \(D \ge 4\), and valency \(k \ge 3\). Let \({{\mathbb {C}}}^X\) denote the vector space over \({{\mathbb {C}}}\) consisting of column vectors with entries in \({{\mathbb {C}}}\) and rows indexed by X. For \(z \in X\), let \({{\widehat{z}}}\) denote the vector in \({{\mathbb {C}}}^X\) with a 1 in the z-coordinate, and 0 in all other coordinates. Fix a vertex x of \(\Gamma \) and let \(T = T(x)\) denote the corresponding Terwilliger algebra. Assume that up to isomorphism there exist exactly two irreducible T-modules with endpoint 2, and they both are thin. Fix \(y \in X\) such that \(\partial (x,y)=2\), where \(\partial \) denotes path-length distance. For \(0 \le i,j \le D\) define \(w_{ij}=\sum {{\widehat{z}}}\), where the sum is over all \(z \in X\) such that \(\partial (x,z)=i\) and \(\partial (y,z)=j\). We define \(W=\mathrm{span}\{w_{ij} \mid 0 \le i,j \le D\}\). In this paper we consider the space \(MW=\mathrm{span}\{mw \mid m \in M, w \in W\}\), where M is the Bose–Mesner algebra of \(\Gamma \). We observe that MW is the minimal A-invariant subspace of \({{\mathbb {C}}}^X\) which contains W, where A is the adjacency matrix of \(\Gamma \). We show that \(4D-6 \le \mathrm{dim}(MW) \le 4D-2\). We display a basis for MW for each of these five cases, and we give the action of A on these bases.  相似文献   

6.
Let \(G=\mathbf{C}_{n_1}\times \cdots \times \mathbf{C}_{n_m}\) be an abelian group of order \(n=n_1\dots n_m\), where each \(\mathbf{C}_{n_t}\) is cyclic of order \(n_t\). We present a correspondence between the (4n, 2, 4n, 2n)-relative difference sets in \(G\times Q_8\) relative to the centre \(Z(Q_8)\) and the perfect arrays of size \(n_1\times \dots \times n_m\) over the quaternionic alphabet \(Q_8\cup qQ_8\), where \(q=(1+i+j+k)/2\). In view of this connection, for \(m=2\) we introduce new families of relative difference sets in \(G\times Q_8\), as well as new families of Williamson and Ito Hadamard matrices with G-invariant components.  相似文献   

7.
Let \(n \ge 2\) be a fixed integer, R be a noncommutative n!-torsion free ring and I be any non zero ideal of R. In this paper we have proved the following results; (i) If R is a prime ring and there exists a symmetric skew n-derivation \(D: R^n \rightarrow R\) associated with the automorphism \(\sigma \) on R,  such that the trace function \(\delta : R \rightarrow R \) of D satisfies \([\delta (x), \sigma (x)] =0\), for all \(x\in I,\) then \(D=0;\,\)(ii) If R is a semi prime ring and the trace function \(\delta ,\) commuting on I,  satisfies \([\delta (x), \sigma (x)]\in Z\), for all \(x \in I,\) then \([\delta (x), \sigma (x)] = 0 \), for all \(x \in I.\) Moreover, we have proved some annihilating conditions for algebraic identity involving multiplicative(generalized) derivation.  相似文献   

8.
We continue the study of additive functions \(f_k:R\rightarrow F \;(1\le k\le n)\) linked by an equation of the form \(\sum _{k=1}^n p_k(x)f_k(q_k(x))=0\), where the \(p_k\) and \(q_k\) are polynomials, R is an integral domain of characteristic 0, and F is the fraction field of R. A method is presented for solving all such equations. We also consider the special case \(\sum _{k=1}^n x^{m_k}f_k(x^{j_k})=0\) in which the \(p_k\) and \(q_k\) are monomials. In this case we show that if there is no duplication, i.e. if \((m_k,j_k)\ne (m_p,j_p)\) for \(k\ne p\), then each \(f_k\) is the sum of a linear function and a derivation of order at most \(n-1\). Furthermore, if this functional equation is not homogeneous then the maximal orders of the derivations are reduced in a specified way.  相似文献   

9.
Let \({\mathbb {F}}_q\) be a finite field with q elements such that \(l^v||(q^t-1)\) and \(\gcd (l,q(q-1))=1\), where lt are primes and v is a positive integer. In this paper, we give all primitive idempotents in a ring \(\mathbb F_q[x]/\langle x^{l^m}-a\rangle \) for \(a\in {\mathbb {F}}_q^*\). Specially for \(t=2\), we give the weight distributions of all irreducible constacyclic codes and their dual codes of length \(l^m\) over \({\mathbb {F}}_q\).  相似文献   

10.
In this paper, we show that for a positive operator A on a Hilbert \(C^*\)-module \( \mathscr {E} \), the range \( \mathscr {R}(A) \) of A is closed if and only if \( \mathscr {R}(A^\alpha ) \) is closed for all \(\alpha \in (0,1)\cup (1,+\,\infty )\), and this occurs if and only if \( \mathscr {R}(A)=\mathscr {R}(A^\alpha ) \) for all \(\alpha \in (0,1)\cup (1,+\,\infty )\). As an application, we prove that for an adjontable operator A if \(\mathscr {R}(A)\) is nonclosed, then \(\dim \left( \overline{\mathscr {R}(A)}/\mathscr {R}(A)\right) =+\,\infty \). Finally, we show that for an adjointable operator A if \( \overline{\mathscr {R}(A^*) } \) is orthogonally complemented in \( \mathscr {E} \), then under certain coditions there exists an idempotent C and a unique operator X such that \( XAX=X, AXA=CA, AX=C \) and \( XA=P_{A^*} \), where \( P_{A^*} \) is the orthogonal projection of \( \mathscr {E} \) onto \( \overline{\mathscr {R}(A^*)}\).  相似文献   

11.
Let \(F\simeq {{\mathrm{GF}}}(p^n)\) be a finite field of characteristic p and \(p_k\) and \(p_\ell \) be power functions on F defined by \(p_k(x)=x^k\) and \(p_\ell (x)=x^\ell \) respectively. We show, that \(p_k\) and \(p_\ell \) are CCZ equivalent, if and only if there exists a positive integer \(0\le a< n\), such that \(\ell \equiv p^a k \pmod {p^n-1}\) or \(k\ell \equiv p^a \pmod {p^n-1}\).  相似文献   

12.
In this paper, we prove the following Riesz spaces’ version of the Korovkin theorem. Let E and F be two Archimedean Riesz spaces with F uniformly complete, let W be a nonempty subset of \(E^{+}\), and let \((T_{n})\) be a given sequence of (r-u)-continuous elements of \(\mathcal {L(}E,F)\), such that \(\left| T_{n}-T_{m}\right| x=\left| (T_{n}-T_{m})x\right| \mathcal {\ }\)for all \(x\in E^{+},\) \(m,n\ge n_{0}\) (for a given \(n_{0}\in \mathbb {N} )\). If the sequence \((T_{n}x)_{n}\) \((r-u)\)-converges for every \(x\in W\), then \((T_{n})\) \((r-u)\)-converges also pointwise on the ideal \(E_{W}\), generated by W, to a linear operator \(S_{0}:E_{W}\rightarrow F\). We also prove a similar Korovkin-type theorem for nets of operators. Some applications for f-algebras and orthomorphisms are presented.  相似文献   

13.
Let \(k\in \mathbb {N}^*\) be even. We consider two trigonometric series \( F_k(x)= \sum _{n=1}^\infty \frac{\sigma _{k-1}(n)}{n^{k+1}} \sin (2\pi n x)\) and \(G_k(x)= \sum _{n=1}^\infty \frac{\sigma _{k-1}(n)}{n^{k+1}} \cos (2\pi n x),\) where \(\sigma _{k-1}\) is the divisor function. They converge on \(\mathbb {R}\) to continuous functions. In this paper, we examine the differentiability of \(F_k\) and \(G_k\). These functions are related to Eisenstein series, and their (quasi-)modular properties allow us to apply the method proposed by Itatsu in 1981 in the study of the Riemann series. We focus on the case \(k=2\) and we show that the sine series exhibits a different behaviour with respect to differentiability than the cosine series. We prove that the differentiability of \(F_2\) at an irrational x is related to the continued fraction expansion of x. We estimate the modulus of continuity of \(F_2\). We formulate a conjecture concerning differentiability of \(F_k\) and \(G_k\) for any k even.  相似文献   

14.
Let A be an \((m \times n)\) integral matrix, and let \(P=\{ x :A x \le b\}\) be an n-dimensional polytope. The width of P is defined as \( w(P)=min\{ x\in \mathbb {Z}^n{\setminus }\{0\} :max_{x \in P} x^\top u - min_{x \in P} x^\top v \}\). Let \(\varDelta (A)\) and \(\delta (A)\) denote the greatest and the smallest absolute values of a determinant among all \(r(A) \times r(A)\) sub-matrices of A, where r(A) is the rank of the matrix A. We prove that if every \(r(A) \times r(A)\) sub-matrix of A has a determinant equal to \(\pm \varDelta (A)\) or 0 and \(w(P)\ge (\varDelta (A)-1)(n+1)\), then P contains n affine independent integer points. Additionally, we present similar results for the case of k-modular matrices. The matrix A is called totally k-modular if every square sub-matrix of A has a determinant in the set \(\{0,\, \pm k^r :r \in \mathbb {N} \}\). When P is a simplex and \(w(P)\ge \delta (A)-1\), we describe a polynomial time algorithm for finding an integer point in P.  相似文献   

15.
We present a way to study a wide class of optimal design problems with a perimeter penalization. More precisely, we address existence and regularity properties of saddle points of energies of the form
$$\begin{aligned} (u,A) \quad \mapsto \quad \int _\Omega 2fu \,\mathrm {d}x \; - \int _{\Omega \cap A} \sigma _1\mathscr {A}u\cdot \mathscr {A}u \, \,\mathrm {d}x \; - \int _{\Omega {\setminus } A} \sigma _2\mathscr {A}u\cdot \mathscr {A}u \, \,\mathrm {d}x \; + \; \text {Per }(A;\overline{\Omega }), \end{aligned}$$
where \(\Omega \) is a bounded Lipschitz domain, \(A\subset \mathbb {R}^N\) is a Borel set, \(u:\Omega \subset \mathbb {R}^N \rightarrow \mathbb {R}^d\), \(\mathscr {A}\) is an operator of gradient form, and \(\sigma _1, \sigma _2\) are two not necessarily well-ordered symmetric tensors. The class of operators of gradient form includes scalar- and vector-valued gradients, symmetrized gradients, and higher order gradients. Therefore, our results may be applied to a wide range of problems in elasticity, conductivity or plasticity models. In this context and under mild assumptions on f, we show for a solution (wA), that the topological boundary of \(A \cap \Omega \) is locally a \(\mathrm {C}^1\)-hypersurface up to a closed set of zero \(\mathscr {H}^{N-1}\)-measure.
  相似文献   

16.
Let P be an odd integer and \((V_{n})\) denote the generalized Lucas sequence defined by \(V_{0}=2,\) \(V_{1}=P,\) and \(V_{n+1}=PV_{n}+V_{n-1}\) for \(n\ge 1.\) In this study, we solve the equations \(V_{n}=5kx^{2},\) \(V_{n}=7kx^{2},\) \(V_{n}=5kx^{2}\pm 1,\) and \(V_{n}=7kx^{2}\pm 1\) when k|P with \(k>1.\) Moreover, applying some of the results, we obtain complete solutions to the equations \(V_{n}=\sigma x^{2},\) \(\sigma \in \left\{ 15,21,35\right\} \).  相似文献   

17.
Let M be an invariant subspace of \(H^2\) over the bidisk. Associated with M, we have the fringe operator \(F^M_z\) on \(M\ominus w M\). For \(A\subset H^2\), let [A] denote the smallest invariant subspace containing A. Assume that \(F^M_z\) is Fredholm. If h is a bounded analytic function on \(\mathbb {D}^2\) satisfying \(h(0,0)\not =0\), then \(F^{[h M]}_z\) is Fredholm and \(\mathrm{ind}\,F^{[h M]}_z=\mathrm{ind}\,F^M_z\).  相似文献   

18.
Let \(\varGamma \) be a distance-semiregular graph on Y, and let \(D^Y\) be the diameter of \(\varGamma \) on Y. Let \(\varDelta \) be the halved graph of \(\varGamma \) on Y. Fix \(x \in Y\). Let T and \(T'\) be the Terwilliger algebras of \(\varGamma \) and \(\varDelta \) with respect to x, respectively. Assume, for an integer i with \(1 \le 2i \le D^Y\) and for \(y,z \in \varGamma _{2i}(x)\) with \(\partial _{\varGamma }(y,z)=2\), the numbers \(|\varGamma _{2i-1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) and \(|\varGamma _{2i+1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) depend only on i and do not depend on the choice of y, z. The first goal in this paper is to show the relations between T-modules of \(\varGamma \) and \(T'\)-modules of \(\varDelta \). Assume \(\varGamma \) is the incidence graph of the Hamming graph H(Dn) on the vertex set Y and the set \({\mathcal {C}}\) of all maximal cliques. Then, \(\varGamma \) satisfies above assumption and \(\varDelta \) is isomorphic to H(Dn). The second goal is to determine the irreducible T-modules of \(\varGamma \). For each irreducible T-module W, we give a basis for W the action of the adjacency matrix on this basis and we calculate the multiplicity of W.  相似文献   

19.
The \(\sigma \)-polynomial is given by \(\sigma (G,x) = \sum _{i=\chi (G)}^{n} a_{i}(G)\, x^{i}\), where \(a_{i}(G)\) is the number of partitions of the vertices of G into i nonempty independent sets. These polynomials are closely related to chromatic polynomials, as the chromatic polynomial of G is given by \(\sum _{i=\chi (G)}^{n} a_{i}(G)\, x(x-1) \ldots (x-(i-1))\). It is known that the closure of the real roots of chromatic polynomials is precisely \(\{0,~1\} \bigcup [32/27,\infty )\), with \((-\infty ,0)\), (0, 1) and (1, 32 / 27) being maximal zero-free intervals for roots of chromatic polynomials. We ask here whether such maximal zero-free intervals exist for \(\sigma \)-polynomials, and show that the only such interval is \([0,\infty )\)—that is, the closure of the real roots of \(\sigma \)-polynomials is \((-\infty ,0]\).  相似文献   

20.
Let k be a field and \(k(x_0,\ldots ,x_{p-1})\) be the rational function field of p variables over k where p is a prime number. Suppose that \(G=\langle \sigma \rangle \simeq C_p\) acts on \(k(x_0,\ldots ,x_{p-1})\) by k-automorphisms defined as \(\sigma :x_0\mapsto x_1\mapsto \cdots \mapsto x_{p-1}\mapsto x_0\). Denote by P the set of all prime numbers and define \(P_0=\{p\in P:\mathbb {Q}(\zeta _{p-1})\) is of class number one\(\}\) where \(\zeta _n\) a primitive n-th root of unity in \(\mathbb {C}\) for a positive integer n; \(P_0\) is a finite set by Masley and Montgomery (J Reine Angew Math 286/287:248–256, 1976). Theorem. Let k be an algebraic number field and \(P_k=\{p\in P: p\) is ramified in \(k\}\). Then \(k(x_0,\ldots ,x_{p-1})^G\) is not stably rational over k for all \(p\in P\backslash (P_0\cup P_k)\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号