首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The gas‐phase geometries of neutral, protonated, and deprotonated forms of some biologically important molecules, alanine (Ala), glycine (Gly), phenylalanine (Phe), and tyrosine (Tyr), were optimized using density functional theory at B3LYP/6‐311++G(d) and the ab initio HF/6‐311++G(d) level of theories. The neutral and different stable ionic states of Ala, Gly, Phe, and Tyr have also been solvated in aqueous medium using polarizable continuum model for the determination of solvation free energies in the aqueous solution. The gas‐phase acidity constants of above four molecules have been also calculated at both levels of theories and found that the values calculated at HF/6‐311++G(d) method are in good agreement with experimental results. A thermodynamic cycle was used to determine the solvation free energies for the proton dissociation process in aqueous solution and the corresponding pKa values of these molecules. The pKa values calculated at B3LYP/6‐311++G(d) method are well supported by the experimental data with a mean absolute deviation 0.12 pKa units. Additionally, the chemical hardness and the ionization potential (IP) for these molecules have been also explored at both the level of theories. The Tyr has less value of chemical hardness and IP at both levels of theories compared with other three molecules, Ala, Gly, and Phe. The calculated values of chemical hardness and IP are decreasing gradually with the substitution of the various functional groups in the side chain of the amino acids. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
In this study, the relative pKa values of nine anilinium derivatives in methanol (MeOH), acetonitrile (AN), and tetrahydrofurane (THF) solutions were successfully calculated with mean absolute deviations of 0.63, 0.68, and 0.75 pKa units, respectively. To this aim, their gas‐phase basicities were computed using the CBS‐QB3 composite method. Also, conductor‐like polarizable continuum model (CPCM) with UAHF, UAKS and UA0 cavities and SM8 solvation models at HF/6‐31+G(d) level of theory were applied for the calculation of the solvation Gibbs free energies. The obtained results indicate that there is reliable correlation between the experimental and computed pKa values in the studied solutions. Therefore, to extend the pKa database for anilines, correlation equations were used to predict the pKa values in the investigated solvents.  相似文献   

3.
《Chemical physics letters》2006,417(1-3):28-33
The molecular equilibria involved in the second and third macroscopic deprotonation processes of Cys have been theoretically characterized at B3LYP/6-31++G** computing level. The role of solvent was analyzed by using the supermolecule (up to six discrete water molecules), the continuum, and the hybrid supermolecule-continuum models. Also, a novel approach to reveal the solvation effect of the bulk water was employed. Calculations performed with the supermolecule or the Onsager models overestimate absolute pKas, whereas the PCM continuum model yields data much closer to the experimental values. The supermolecule-PCM approach estimates the pKa values for the amino group much better than for the thiol group.  相似文献   

4.
The accurate pKa determinations for three carboxylic acids have been investigated using the combination of the extended clusters‐continuum model at B3LYP/6‐31+g(d,p) and B3LYP/6‐311++g(d,p) levels. To take into account of the effect of the water combined with carboxylic acids in different positions, eleven molecular clusters were considered. Among these clusters, the one involving the carboxylic acid wrapped up with water molecules and saturated with hydrogen bonds (four hydrogen bonds around ? COOH) leads to the best B3LYP pKa results compared to the experimental data. For those clusters saturated with hydrogen bonds, when n = 3 (the number of water molecules), the average absolute errors between the calculated pKa results and experimental data of these three carboxylic acids were 0.19 (0.23) and 0.12 (0.22) pKa at B3LYP/6‐31+g(d,p)//PCM (IEFPCM) and B3LYP/6‐311++g(d,p)//PCM (IEFPCM) levels, respectively; when n = 4, they are 0.53 (1.23) and 1.09 (1.03) pKa, respectively. On the basis of the above results, the molecular cluster saturated with four hydrogen bonds formed by three waters and one carboxylic acid molecule was the chief existence in the carboxylic acid solution. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

5.
The 96 pKa values of 85 carboxylic acids in aqueous solution were calculated with the density functional theory method at the level of B3LYP/6‐31+G(d,p) and the polarizable continuum model (PCM) was used to describe the solvent. In the calculations of pKa values, the dissociation Gibbs free energies were directly calculated using carboxylic acid dissociation reactions in aqueous solution, i. e., no thermodynamic cycle was employed, which is different from the previous literatures. A highly significant correlation of R2=0.95 with a standard deviation (SD) of 0.36 between the experimental pKa values and the calculated dissociation Gibbs free energies [ΔG(calc.)] was found. The slope of pKa vs. (G(calc.)/(20303RT) is only 47.6% of the theoretically expected value, which implies that the ΔG(calc.) value from the theoretical calculation is larger than the actual one for all 85 carboxylic acids studied. Thus, by adding the 0.476 scaling‐factor into the slope, we can derive a reliably procedure that can reproduce the experimental pKa values of carboxylic acids. The pKa values furnished by this procedure are in good agreement with the experimental results for carboxylic acids in aqueous solution.  相似文献   

6.
The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08‐HX and M11‐L) and ab initio methods (SCS‐MP2, G3). Implicit solvent effects are included with a conductor‐like polarizable continuum model (CPCM) and universal solvation models (SMD, SM8). G3, SCS‐MP2 and M11‐L methods coupled with SMD and SM8 solvation models perform well for alkanolamines with mean unsigned errors below 0.20 pKa units, in all cases. Extending this method to the pKa calculation of 35 nitrogen‐containing compounds spanning 12 pKa units showed an excellent correlation between experimental and computational pKa values of these 35 amines with the computationally low‐cost SM8/M11‐L density functional approach.  相似文献   

7.
The physical properties of chemicals are strongly influenced by their protonation state, affecting, for example, solubility or hydrogen-bonding characteristics. The ability to accurately calculate protonation states in the form of pK as is, therefore, desirable. Calculations of pK a changes in a series of substituted pyridines are presented. Computations were performed using both ab initio and semiempirical approaches, including free energies of solvation via reaction-field models. The selected methods are readily accessible with respect to both software and computational feasibility. Comparison of calculated and experimental pK as shows the experimental trends to be reasonably reproduced by the computations with root-mean-square differences ranging from 1.22 to 4.14 pK a units. Of the theoretical methods applied the best agreement occurred using the second-order M?ller–Plesset/6-31G(d)/isodensity surface polarized continuum solvation model, while the more computationally accessible Austin model 1/Solvent model 2 (SM2) approach yielded results similar to the ab initio methods. Analysis of component contributions to the calculated pK as indicates the largest source of error to be associated with the free energies of solvation of the protonated species followed by the gas-phase protonation energies; while the latter may be improved via the use of higher levels of theory, enhancements in the former require improvements in the solvation models. The inclusion of alternate minimum in the computation of pK as is also indicated to contribute to differences between experimental and calculated pK a values. Received: 27 April 1999 / Accepted: 27 July 1999 / Published online: 2 November 1999  相似文献   

8.
Theoretical calculations of ESR parameters for aminoxyl radicals have been widely studied using the density functional theory (DFT) calculations. However, the isomer N‐alkoxyaminyl radicals have been limitedly studied. With the use of experimental data for 46 N‐alkoxyaminyl and 38 aminoxyl radicals, the isotropic 14N hyperfine coupling constants (aN) and g‐factors have been theoretically estimated by several DFT calculations. The best calculation scheme of aN for N‐alkoxyaminyl radicals was PCM/B3LYP/6‐31 + + G(d,p) (R2 = 0.9519, MAE = 0.034 mT), and that for aminoxyl radicals was PCM/BHandHLYP/6‐31 + + G(3df,3pd) (R2 = 0.9336, MAE = 0.057 mT). For aminoxyl radicals, the solvation models in calculations enhanced the accuracy of reproducibility. In contrast, for N‐alkoxyaminyl radicals the calculations with solvation models provided no improvement. The differences in the best functionals between two types of radicals were thought to come from the contribution ratios of neutral and dipolar canonical structures in resonance forms. The aN for N‐alkoxyaminyl radicals that were stabilized by small contribution of dipolar canonical structures could be precisely reproduced by B3LYP with only 20% HF exact exchange. In contrast, the aN for aminoxyl radicals stabilized by large contribution of dipolar canonical structures was well reproduced by BHandHLYP with 50% HF exchange. The best calculation scheme of g‐factors was IEFPCM/B3LYP/6‐31 + G(d,p) (R2 = 0.9767, MAE = 0.0001) for not only aminoxyl but also N‐alkoxyaminyl radicals. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
CBS-QB3, two simplified and less computationally demanding versions of CBS-QB3, DFT-B3LYP, and HF quantum chemistry methods have been used in conjunction with the CPCM continuum solvent model to calculate the free energies of proton exchange reactions in water solution following an isodesmic reaction approach. According to our results, the precision of the predicted pK a values when compared to experiment is equivalent to that of the thermodynamic cycles that combine gas-phase and solution-phase calculations. However, in the aqueous isodesmic reaction schema, the accuracy of the results is less sensitive to the presence of explicit water molecules and to the global charges of the involved species since the free energies of solvation are not required. In addition, this procedure makes easier the prediction of pK a values for molecules that undergo large conformational changes in solvation process and makes possible the pK a prediction of unstable species in gas-phase such as some zwitterionic tautomers. The successive pK a values of few amino acids corresponding to the ionization of the α-carboxylic acid and α-amine groups, which is one of the problematic cases for thermodynamic cycles, were successfully calculated by employing the aqueous isodesmic reaction yielding mean absolute deviations of 0.22 and 0.19 pK a units for the first and second ionization processes, respectively.  相似文献   

10.
A thermodynamic cycle to calculate pKa values (Minus log of acid dissociation constants) of hydroxamic acids is presented. Hydroxamic acids exist mainly as amide isomers in the aqueous medium. The amide form of hydroxamic acids has two deprotonation sites and may yield either an N-ion or an O-ion upon deprotonation. The thermodynamic cycle proposed includes the gas-phase N–H deprotonation of the hydroxamic acid, the solvent phase transformation of the N-ion to the O-ion and the solvation of the hydroxamic acid molecule and the O-ion in water. The CBS-QB3 method was employed to obtain gas-phase free energy differences between 12 hydroxamic acids and their respective anions. The aqueous solvation Gibbs free energy changes were calculated at the HF/6-31G(d)/CPCM and HF/6-31+G(d)/CPCM levels of theory using HF/6-31+G(d)/CPCM geometries. For the proton, literature values of the gas-phase free energy of formation and the solvation free energy change were used. The free energy change for the transformation of the N-ion to O-ion in the aqueous medium was calculated by employing CBS-QB3/CPCM in the aqueous medium. For this, the hydroxamic acids were divided in two classes according to the substituent at the carbonyl carbon. A common transformation free energy difference for aliphatic substituted hydroxamic acids and a separate common transformation free energy difference for aromatic substituted hydroxamic acids were obtained. The pKa calculation yielded a root mean square error of 0.32 pKa units.  相似文献   

11.
Free energies of hydration (FEH) have been computed for 13 neutral and nine ionic species as a difference of theoretically calculated Gibbs free energies in solution and in the gas phase. In‐solution calculations have been performed using both SCIPCM and PCM polarizable continuum models at the density functional theory (DFT)/B3LYP and ab initio Hartree–Fock levels with two basis sets (6‐31G* and 6‐311++G**). Good linear correlation has been obtained for calculated and experimental gas‐phase dipole moments, with an increase by ~30% upon solvation due to solute polarization. The geometry distortion in solution turns out to be small, whereas solute polarization energies are up to 3 kcal/mol for neutral molecules. Calculation of free energies of hydration with PCM provides a balanced set of values with 6‐31G* and 6‐311++G** basis sets for neutral molecules and ionic species, respectively. Explicit solvent calculations within Monte Carlo simulations applying free energy perturbation methods have been considered for 12 neutral molecules. Four different partial atomic charge sets have been studied, obtained by a fit to the gas‐phase and in‐solution molecular electrostatic potentials at in‐solution optimized geometries. Calculated FEH values depend on the charge set and the atom model used. Results indicate a preference for the all‐atom model and partial charges obtained by a fit to the molecular electrostatic potential of the solute computed at the SCIPCM/B3LYP/6‐31G* level. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

12.
Determination of acid‐dissociation constants, pKa, of aspartic acid in aqueous solution, using density functional theory calculations combined with the conductor‐like polarizable continuum model (CPCM) and with integral‐equation‐formalism polarizable continuum model (IEFPCM) based on the UAKS and UAHF radii, was carried out. The computed pKa values derived from the CPCM and IEFPCM with UAKS cavity model of bare structures of the B3LYP/6‐31+G(d,p)‐optimized tetrahydrated structures of aspartic acid species are mostly close to the experimental pKa values. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

13.
We have computed pKa values for 11 substituted phenol compounds using the continuum Fuzzy‐Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides, and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within about 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed‐position grid points. Second, it uses either second‐ or first‐order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of using the first‐order technique. This approximation places the presented methodology between the Generalized Born and Poisson‐Boltzmann continuum solvation models with respect to their accuracy of reproducing the many‐body effects in modeling a continuum solvent. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
A quantum chemical model is introduced to predict the H‐bond donor strength of monofunctional organic compounds from their ground‐state electronic properties. The model covers ? OH, ? NH, and ? CH as H‐bond donor sites and was calibrated with experimental values for the Abraham H‐bond donor strength parameter A using the ab initio and density functional theory levels HF/6‐31G** and B3LYP/6‐31G**. Starting with the Morokuma analysis of hydrogen bonding, the electrostatic (ES), polarizability (PL), and charge transfer (CT) components were quantified employing local molecular parameters. With hydrogen net atomic charges calculated from both natural population analysis and the ES potential scheme, the ES term turned out to provide only marginal contributions to the Abraham parameter A, except for weak hydrogen bonds associated with acidic ? CH sites. Accordingly, A is governed by PL and CT contributions. The PL component was characterized through a new measure of the local molecular hardness at hydrogen, η(H), which in turn was quantified through empirically defined site‐specific effective donor and acceptor energies, EEocc and EEvac. The latter parameter was also used to address the CT contribution to A. With an initial training set of 77 compounds, HF/6‐31G** yielded a squared correlation coefficient, r2, of 0.91. Essentially identical statistics were achieved for a separate test set of 429 compounds and for the recalibrated model when using all 506 compounds. B3LYP/6‐31G** yielded slightly inferior statistics. The discussion includes subset statistics for compounds containing ? OH, ? NH, and active ? CH sites and a nonlinear model extension with slightly improved statistics (r2 = 0.92). © 2008 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

15.
The dissociation constant (pKa) of a drug is a key parameter in drug discovery and pharmaceutical formulation. The hydroxy substituent has a significant effect on the acidity of hydroxycinnamic acid. In this work, the acidic constants of coumaric acids are obtained experimentally by spectrophotometry using the chemometric method and calculated theoretically using ab initio quantum mechanical method at the HF/6‐31G* level of theory in combination with the SMD continuum solvation method. Rank annihilation factor analysis (RAFA) is an efficient chemometric technique based on the elimination of the contribution of one of the chemical components from the data matrix. RAFA cannot be performed because the pure spectrum of HA? is not available. So, two‐rank annihilation factor analysis (TRAFA) is proposed for the determination of the pKa OF H2A. A comparison between the pKa values obtained previously by TRAFA for the molecules o‐coumaric acid (4.13, 9.58), m‐coumaric acid (4.48, 10.35), and p‐coumaric acid (4.65, 9.92) makes it clear that there is good agreement between the results obtained by TRAFA and ab initio quantum mechanical method.  相似文献   

16.
Density functional theory, B3LYP/6‐31G** and B3LYP/6‐311+G(2d,p), and ab initio MP2/6‐31G** calculations have been carried out to investigate the conformers, transition states, and energy barriers of the conformational processes of oxalic acid and its anions. QCISD/6‐31G** geometrical optimization is also performed in the stable forms. Its calculated energy differences between the two most stable conformers are very near to the related observed value at 7.0 kJ/mol. It is found that the structures and relative energies of oxalic acid conformers predicted by these methods show similar results, and that the conformer L1 (C2h) with the double‐interfunctional‐groups hydrogen bonds is the most stable conformer. The magnitude of hydrogen bond energies depends on the energy differences of various optimized structures. The hydrogen bond energies will be about 32 kJ/mol for interfunctional groups, 17 kJ/mol for weak interfunctional groups, 24 kJ/mol for intra‐COOH in (COOH)2, and 60 kJ/mol for interfunctional groups in (COOH)COO−1 ion if calculated using the B3LYP/6‐311+G(2d,p) method. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 541–551, 2000  相似文献   

17.
Two members of the green fluorescent protein family, the purple asFP595 and yellow zFP538 proteins, are perspective fluorescent markers for use in multicolor imaging and resonance energy-transfer applications. We report the results of quantum based calculations of the solution pKa values for selected protonation sites of the denatured asFP595 and zFP538 chromophores in the trans- and cis-conformations in order to add in the interpretation of photo-physical properties of these proteins. The pKa values were determined from the theromodynamic cycle based on B3LYP/6-311++G(2df, 2p) calculations of the gas phase free energies of the molecules and the B3LYP/6-311++G(d, p) calculations of solvation energies. The results show that the pKa’s of the protonation sites of the chromophore from asFP595 noticeably depend on the isomer conformation (cis- or trans-), while those of zFP538 are much less sensitive to isomerization.  相似文献   

18.
Thermodynamic parameters of direct iodination of benzene with several iodinating agents were calculated using semiempirical (PM3), ab initio (3–21G**), and DFT (B3LYP/LanL2DZ) methods, as well as in terms of the polarization continuum model (PCM or Tomasi model). A close to linear correlation was found between the calculated thermodynamic parameters (ΔH , ΔG ) and pK T and experimental pK a values of acids whose anions are incorporated into iodine-containing intermediates.  相似文献   

19.
The geometric parameters, vibrational frequencies, and thermochemical values of p-quinonimine (p-AQ) and p-aminophenol (p-AP) were computed ab initio (IIF) and by the density functional theory (DFT) method with the 6-31G(d, p) basis set. Cyclic voltammetry with a golden electrode of p-AP solutions in phosphate buffers at pH 7.30 showed that the standard electrode potential of half reaction for p-QI and p-AP was 0.728 V. The standard electrode potentials of half reactions for p-QI and p-AP were calculated using the free energies and solvation energies of p-QI, p-AP, p-benzoquinone (p-BQ), and hydroquinone (p-HQ). The results showed that the standard electrode potential of half reaction for p-QI and p-AP was 0.743 V at the B3LYP/6-31G(d, p) level and 0.755 V at the HF/6-31G(d, p) level. The standard electrode potentials computed at the B3LYP/6-31G(d, p) and HF/6-31G(d, p) levels were close to their experimental values. The article is published in the original.  相似文献   

20.
The title molecule, 2‐(4‐chlorophenyl)‐1‐methyl‐1H‐benzo[d]imidazole (C14H11ClN2), was prepared and characterized by 1H NMR, 13C NMR, IR, and single‐crystal X‐ray diffraction. The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated by using the Hartree‐Fock (HF) and density functional theory (DFT/B3LYP) method with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, and nonlinear optical (NLO) properties of the title compound were investigated by theoretical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号