首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ab initio geometry optimization was carried out on 10 selected conformations of maltose and two 2‐methoxytetrahydropyran conformations using the density functional denoted B3LYP combined with two basis sets. The 6‐31G* and 6‐311++G** basis sets make up the B3LYP/6‐31G* and B3LYP/6‐311++G** procedures. Internal coordinates were fully relaxed, and structures were gradient optimized at both levels of theory. Ten conformations were studied at the B3LYP/6‐31G* level, and five of these were continued with full gradient optimization at the B3LYP/6‐311++G** level of theory. The details of the ab initio optimized geometries are presented here, with particular attention given to the positions of the atoms around the anomeric center and the effect of the particular anomer and hydrogen bonding pattern on the maltose ring structures and relative conformational energies. The size and complexity of the hydrogen‐bonding network prevented a rigorous search of conformational space by ab initio calculations. However, using empirical force fields, low‐energy conformers of maltose were found that were subsequently gradient optimized at the two ab initio levels of theory. Three classes of conformations were studied, as defined by the clockwise or counterclockwise direction of the hydroxyl groups, or a flipped conformer in which the ψ‐dihedral is rotated by ∼180°. Different combinations of ω side‐chain rotations gave energy differences of more than 6 kcal/mol above the lowest energy structure found. The lowest energy structures bear remarkably close resemblance to the neutron and X‐ray diffraction crystal structures. © 2000 John Wiley & Sons, Inc. * J Comput Chem 21: 1204–1219, 2000  相似文献   

2.
Density functional calculations at the B3LYP level with 6‐311G** and aug‐cc‐pVDZ basis sets were performed to predict the heats of formation (HOFs) for two pyrazine derivatives and eight pyridine derivatives. In the isodesmic reactions designed for the computation of heats of formation (HOFs), pyrazine and pyridine were chosen as reference compounds. The N‐oxidations for the ring nitrogen of pyrazine and pyridine derivatives decrease the HOF values when N‐oxide oxygen is neighboring with amino groups, but increase when it neighbors with nitro groups. Thermal stability was evaluated via bond dissociation energies (BDE) at the UB3LYP/6‐311G** level. As a whole, the homolysis of C–NO2 bonds is the main step for bond dissociation of the title compounds. The BDE values of title compounds are influenced by intramolecular hydrogen bonds. The hydrogen bond effects associated with the length of the H···O bonds were analyzed by the electron density at the critical points and natural bond orbital.  相似文献   

3.
This work reports an interaction of 1,4‐dioxane with one, two, and three water molecules using the density functional theory method at B3LYP/6‐311++G* level. Different conformers were studied and the most stable conformer of 1,4‐dioxane‐(water)n (n = 1–3) complex has total energies ?384.1964038, ?460.6570694, and ?537.1032381 hartrees with one, two, and three water molecules, respectively. Corresponding binding energy (BE) for these three most stable structures is 6.23, 16.73, and 18.11 kcal/mol. The hydrogen bonding results in red shift in O? O stretching and C? C stretching modes of 1,4‐dioxane for the most stable conformer of 1,4‐dioxane with one, two, and three water molecules whereas there was a blue shift in C? O symmetric stretching and C? O asymmetric stretching modes of 1,4‐dioxane. The hydrogen bonding results in large red shift in bending mode of water and large blue shift in symmetric stretching and asymmetric stretching mode of water. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

4.
The molecular structure and intramolecular hydrogen bond energy of 18 conformers of 3‐imino‐propenyl‐amine were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set. The atom in molecules or AIM theory of Bader, which is based on the topological properties of the electron density (ρ), was used additionally and the natural bond orbital (NBO) analysis was also carried out. Furthermore calculations for all possible conformations of 3‐imino‐propenyl‐amin in water solution were also carried out at B3LYP/6‐311++G** and MP2/6‐311++G** levels of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the imine–amine conformers of this compound are more stable than the other conformers. B3LYP method predicts the IMA‐1 as global minimum. This stability is mainly due to the formation of a strong N? H···N intramolecular hydrogen bond, which is assisted by π‐electrons resonance, and this π‐electrons are established by NH2 functional group. Hydrogen bond energies for all conformers of 3‐imino‐propenyl‐amine were obtained from the related rotamers methods. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
The effect of ring fluorination on the structural and dynamical properties of the flexible model molecule 2‐fluorobenzylamine has been studied by rotational spectroscopy in free‐jet expansion and quantum chemical methods. The complete potential energy surface originating from the flexibility of the aminic side chain has been calculated at the B3LYP/6‐311++G** level of theory and the stable geometries were also characterized with MP2/6‐311++G**. The rotational spectra show the presence of two of the predicted four stable conformers: the global minimum (I), in which the side chain’s dihedral angle with the phenyl plane is almost perpendicular, is stabilized by an intramolecular hydrogen bond between the fluorine atom and one hydrogen of the aminic group; and a second conformer II (EII?EI≈5 kJ mol?1) in which the dihedral angle is smaller and the amino group points towards the aromatic ortho hydrogen atom. This conformation is characterized by a tunneling motion between two equivalent positions of the amino group with respect to the phenyl plane, which splits the rotational transition. The ortho fluorination increases, with respect to benzylamine, the tunneling splitting of this motion by four orders of magnitude. The motion is analyzed with a one‐dimensional flexible model, which allows estimation of the energy barrier for the transition state as approximately 8.0 kJ mol?1.  相似文献   

6.
The microscopic mechanisms of the electrocyclic reactions for cis‐1,3‐butadiene and its monofluoro‐, monochloroderivatives have been studied by density functional theory (DFT), using the B3LYP method and 6‐311++G** basis sets. We optimized the geometric configurations of reactants, transition states, and products; verified all the probable transition states through vibrational analysis; and calculated the relative single‐point energies at the QCISD(T)/6‐311++G**//B3LYP/6‐311++G**. The results show that the monofluoro‐, monochloroderivatives of cis‐1,3‐butadiene both have two conformers; the reactant favors the electrocyclic reaction when one outboard hydrogen atom of the CH2 groups is substituted by the fluorine or chlorine atom. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

7.
The theoretical study of the dehydrogenation of 2,5‐dihydro‐[furan ( 1 ), thiophene ( 2 ), and selenophene ( 3 )] was carried out using ab initio molecular orbital (MO) and density functional theory (DFT) methods at the B3LYP/6‐311G**//B3LYP/6‐311G** and MP2/6‐311G**//B3LYP/6‐311G** levels of theory. Among the used methods in this study, the obtained results show that B3LYP/6‐311G** method is in good agreement with the available experimental values. Based on the optimized ground state geometries using B3LYP/6‐311G** method, the natural bond orbital (NBO) analysis of donor‐acceptor (bond‐antibond) interactions revealed that the stabilization energies associated with the electronic delocalization from non‐bonding lone‐pair orbitals [LP(e)X3] to δ*C(1)  H(2) antibonding orbital, decrease from compounds 1 to 3 . The LP(e)X3→δ*C(1)  H(2) resonance energies for compounds 1 – 3 are 23.37, 16.05 and 12.46 kJ/mol, respectively. Also, the LP(e)X3→δ*C(1)  H(2) delocalizations could fairly explain the decrease of occupancies of LP(e)X3 non‐bonding orbitals in ring of compounds 1 – 3 ( 3 > 2 > 1 ). The electronic delocalization from LP(e)X3 non‐bonding orbitals to δ*C(1)  H(2) antibonding orbital increases the ground state structure stability, Therefore, the decrease of LP(e)X3→δ*C(1)  H(2) delocalizations could fairly explain the kinetic of the dehydrogenation reactions of compounds 1 – 3 (k 1 >k 2 >k 3 ). Also, the donor‐acceptor interactions, as obtained from NBO analysis, revealed that the (C(4)C(7)→δ*C(1)  H(2) resonance energies decrease from compounds 1 to 3 . Further, the results showed that the energy gaps between (C(4)C(7) bonding and δ*C(1)  H(2) antibonding orbitals decrease from compounds 1 to 3 . The results suggest also that in compounds 1 – 3 , the hydrogen eliminations are controlled by LP(e)→δ* resonance energies. Analysis of bond order, natural bond orbital charges, bond indexes, synchronicity parameters, and IRC calculations indicate that these reactions are occurring through a concerted and synchronous six‐membered cyclic transition state type of mechanism.  相似文献   

8.
Molecular structure of 1,1,1-trifluoro-pentane-2,4-dione, known as trifluoro-acetylacetone (TFAA), has been investigated by means of Density Functional Theory (DFT) calculations and the results were compared with those of acetylacetone (AA) and hexafluoro-acetylacetone (HFAA). The harmonic vibrational frequencies of both stable cis-enol forms were calculated at B3LYP level of theory using 6-31G** and 6-311++G** basis sets. We also calculated the anharmonic frequencies at B3LYP/6-31G** level of theory for both stable cis-enol isomers. The calculated frequencies, Raman and IR intensities, and depolarization ratios were compared with the experimental results. The energy difference between the two stable cis-enol forms, calculated at B3LYP/6-311++G**, is only 5.89 kJ/mol. The observed vibrational frequencies and Raman and IR intensities are in excellent agreement with the corresponding values calculated for the most stable conformation, 2TFAA. According to the theoretical calculations, the hydrogen bond strength for the most stable conformer is 57 kJ/mol, about 9.5kJ/mol less than that of AA and about 14.5 kJ/mol more than that of HFAA. These hydrogen bond strengths are consistent with the frequency shifts for OH/OD stretching and OH/OD out-of-plane bending modes upon substitution of CH(3) groups with CF(3) groups. By comparing the vibrational spectra of both theoretical and experimental data, it was concluded that 2TFAA is the dominant isomer.  相似文献   

9.
吡啶-BH~3相互作用复合物的理论研究   总被引:2,自引:2,他引:2  
对吡啶-BH~3复合物分别用MP2/6-31+G^*和B3LYP/6-31+G^*进行理论计算以预测该复合物的构型及解离能,得到四种构型,在MP2优化构型基础上作CCSD/6-31+G^*单点能量计算以验证MP2与B3LYP结果的可靠性,然后用B3LYP作振动频率分析,计算了各构型的垂直电离势,最后用更大基组作单点能量计算和自然键轨道(NBO)分析。结果表明,N-B直接相连的构型最稳定,其解离能为141.50kJ/mol,MP2和B3LYP对N-H接近的构型结果相关较大,另外两种构型稳定性介于二者之间,解离能分别为15.18kJ/mol,14.06kJ/mol(MP2/6-31+G^*)。  相似文献   

10.
Ab initio molecular orbital theory with the LANL2DZ, 3-21G, 6-31G(d), 6-31+G(d), 6-31+G(d,p), 6-311+G(d,p),6-31G(2d), 6-31G(3d), and 6-311G(d,p) basis sets and density functional theory (B3P86, B3LYP, B3PW91) have been used to calculate the structures, relative energies, enthalpies, entropies, and free energies of the chair, 1,4-twist, and 2,5-twist conformers of tetrahydro-2H-thiopyran (tetrahydrothiopyran, thiacyclohexane, thiane, pentamethylene sulfide). All levels of theory calculated similar energy values and the effect of basis sets on the calculated energies was small. The chair conformer of tetrahydro-2H-thiopyran was 5.27 kcal/mol more stable than the 1,4-twist conformer, which was slightly more stable (0.81 kcal/mol) than the 2,5-twist conformer. The chair–1,4-twist and chair–2,5-twist free energy differences ( G°c – t) were 5.44 and 5.71 kcal/mol, respectively. Intrinsic reaction coordinate [IRC, minimum-energy path (MEP)] calculations connected the transition state between the chair and the 2,5-twist conformers. This transition state is 9.73 kcal/mol higher in energy than the chair conformer and the energy differences between the chair and the 1,4-boat and 2,5-boat transition states were 8.07 and 6.38 kcal/mol, respectively. Stereoelectronic hyperconjugative interactions were observed in the chair, 1,4-twist, and 2,5-twist conformers of tetrahydro-2H-thiopyran. The stereoelectronic hyperconjugative effects in the chair conformer of tetrahydro-2H-thiopyran have been compared to those in the respective chair conformers of tetrahydro-2H-pyran, tetrahydro-2H-selenane, and tetrahydro-2H-tellurane.  相似文献   

11.
The effect of some substituents on intramolecular hydrogen bonding of 5‐X‐2‐hydroxybenzaldehyde (5‐X‐2‐HBA) has been studied by B3LYP and MP2 methods using 6‐311++G** and AUG‐cc‐PVTZ basis sets. The relationship between hydrogen bond energy EHB and electron donation (or withdrawal) of substituents has been investigated. An approximately good linear relationship has been detected between Hammett coefficients and hydrogen bond formation energy (R2 = 0.98). Herein, population analysis has been performed by atoms in molecules (AIM) and natural bond orbital (NBO) methods. The results of AIM and NBO analyses are in a good agreement with calculated energy values. Furthermore, correlation between ring aromaticity and hydrogen bonding has been investigated by nucleus‐independent chemical shift (NICS) at GIAO/B3LYP/6‐311++G** level of theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

12.
All the plausible conformations of β-aminoacrolein (AMAC) have been investigated by the Bekes-Lee-Yang-Parr (B3LYP) nonlocal density functional with extended 6-311++G** basis set for studying the stability order of conformers and the various possibilities of intramolecular hydrogen bonding formation. In general the ketoamine (KA) conformers of AMAC, by mean average, are more stable than the corresponding enolimine (EI) and ketoimine (KI) analogues and this stability is mainly due to the π-electron resonance in these conformers that established by NH2 functional group. The contribution of resonance to the stability of chelated KA conformers is about 75.6 kJ/mol, which is greater than that of the hydrogen bond energy (EHB=35.0 kJ/mol). The relative decreasing order of the various hydrogen bond energies was found to be: O–HNimine(strong)>Namine-HOketo (normal)>Nimine-HOhydroxyl (weak) > Nimine-HOketo (weak). Hydrogen bond energies for all systems were obtained from the method that we called related rotamers method (RRM). The topological properties of the electron density contributions for various type of intramolecular hydrogen bond have been analyzed in term of the Bader theory of atoms in molecules (AIM). The results of these calculations support the previous calculations, which obtained by the related rotamer methods.  相似文献   

13.
Density functional theory B3LYP method with 6‐31G* basis set has been used to optimize the geometries of the catechin, water and catechin‐(H2O)n complexes. The vibrational frequencies have been studied at the same level to analyze these complexes. Six and eleven stable structures for the catechin‐H2O and catechin‐(H2O)2 have been found, respectively. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) have been utilized to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes corrected by basis set superposition error, are from ?13.27 to ?83.56 kJ/mol. All calculations also indicate that there are strong hydrogen‐bonding interactions in catechin‐water complexes. The strong hydrogen‐bonding contributes to the interaction energies dominantly. The O–H stretching motions in all the complexes are red‐shifted relative to that of the monomer.  相似文献   

14.
High level ab initio and density functional theory calculations have been carried out to investigate the relative stability of the different conformers of hyponitrous acid and its mono- and dithio-derivatives. Geometries and vibrational frequencies were obtained at the B3LYP/6-311+G(d,p) level and final energies through B3LYP/6-311++G(3df,2pd) single point calculations. The reliability of this theoretical scheme has been assessed by comparing these DFT results with those obtained at the G3 level of theory, for some suitable cases. The cis conformers of hyponitrous acid and its mono- and dithio-derivatives are systematically more stable than the trans ones because in the cis conformation a dative interaction between the nitrogen-lone pairs and the σNX^* antibonding orbital is significantly favored. Quite interestingly, in general, the conformers presenting an intramolecular hydrogen bond (IHB) are not the global minima of the corresponding potential energy surfaces and only for hyponitrous acid the conformer with a OH ⋅s O IHB is slightly more stable than the cis conformer without IHB. The low stability of the tautomers with IHB is closely related with another weak intramolecular interaction which involves the lone-pairs of the chalcogen atoms and the πNN* antibondig orbital, and which is significantly perturbed when the IHB is formed.  相似文献   

15.
The relationships among geometrical parameters, estimated binding energies, and nuclear magnetic resonance data in –C?O···H? O? intramolecular H‐bond of some substituted 2‐hydroxybenzaldehyde have theoretically been studied by B3LYP and MP2 methods with 6‐311++G** and AUG‐cc‐PVTZ basis sets. All substituents increase estimated hydrogen bond energies EHBs (with the exception of NO2 and C2H5), which are in good correlation with geometrical parameters, topological properties of electron density calculated at O···H bond critical points and ring critical points by using atoms in molecules method, the results of natural bond orbital analysis, and calculated nuclear magnetic resonance data. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

16.
We have computationally studied para‐X‐substituted phenols and phenolates (X = NO, NO2, CHO, COMe, COOH, CONH2, Cl, F, H, Me, OMe, and OH) and their hydrogen‐bonded complexes with B? and HB (B = F and CN), respectively, at B3LYP/6‐311++G** and BLYP‐D/QZ4P levels of theory. Our purpose is to explore the structures and stabilities of these complexes. Moreover, to understand the emerging trends, we have analyzed the bonding mechanisms using the natural bond orbital scheme as well as Kohn–Sham molecular orbital (MO) theory in combination with quantitative energy decomposition analyses [energy decomposition analysis (EDA), extended transition state‐natural orbitals for chemical valence (ETS‐NOCV)]. These quantitative analyses allow for the construction of a simple physical model that explains all computational observations. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The conformers of cycloheptane through cyclodecane have been examined at the B3LYP/6-311+G* and MP2/6-311+G* theoretical levels, with some additional calculations at the CCD/6-311+G* and CCSD(T)/6-311++G** levels. With cyclooctane, B3LYP predicts that the boat-chair and crown conformers have similar energies, whereas MP2 and CCSD(T) predict that the crown conformer is 2 kcal/mol higher in energy. The latter is in agreement with the electron diffraction data. With cyclononane, B3LYP predicts that two of the higher-energy conformers found in molecular mechanics calculations should convert to one of the lower-energy conformers. However, MP2/6-311+G* optimizations find them to be true minima on the potential energy surface. B3LYP systematically predicts larger C-C-C bond angles for these compounds than either MP2 or CCD. The results of molecular mechanics MM4 calculations are generally in good agreement with those obtained using MP2.  相似文献   

18.
Employing introductory (3‐21G RHF) and medium‐size (6‐311++G** B3LYP) ab initio calculations, complete conformational libraries, containing as many as 27 conformers, have been determined for diamide model systems incorporating the amino acids valine (Val) and phenylalanine (Phe). Conformational and energetic properties of these libraries were analyzed. For example, significant correlation was found between relative energies from 6‐311++G** B3LYP and single‐point B3LYP/6‐311++G**//RHF/3‐21G calculations. Comparison of populations of molecular conformations of hydrophobic aromatic and nonaromatic residues, based on their ab initiorelative energies, with their natural abundance indicates that, at least for the hydrophobic core of proteins, the conformations of Val (Ile, Leu) and Phe (Tyr, Trp) are controlled by the local energetic preferences of the respective amino acids. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 732–751, 2001  相似文献   

19.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

20.
Intramolecular hydrogen binding interactions in 8‐hydroxyquinoline, both in its zwitterionic tautomer and in the rotamer without the intramolecular hydrogen bond (IHB), have been computed using the B3LYP and MPW1K density functionals. The rotation of the O? H bond and intramolecular proton transfer reactions were studied theoretically. The following theory levels have been applied: B3LYP/6‐31G(d,p), B3LYP/6‐311++G(d,p), MPW1K/6‐311++G(d,p), and MPW1K/6‐311++G(2d,3p)//MPW1K/6‐311++G(d,p). Natural bond orbital (NBO) analysis has also been carried out. The effect of medium (benzene, chloroform, tetrahydrofuran, 1,2‐dichloroethane, acetone, water) was simulated using the self‐consistent reaction field (SCRF) method within the framework of the polarizable continuum model (PCM), at the MPW1K/6‐311++G(d,p) level. The evolution of geometry, relative energies, heights of rotation (around the O? H bond) and tautomerization barriers, IHB energies, and ΔG(solv) have been systematically investigated. The results obtained have shown the failure to neglect some changes of the above characteristics in polar media with respect to the gaseous phase. The series of stability of the forms under study in the gaseous phase remains the same in solution. Thus, in spite of the important role of the solvent electrostatic effects, the intrinsic stability of those species overcomes the solvent effects. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号