首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The technique has been developed for the quantification of small tantalum, cesium, barium, lanthanum, cerium, and neodymium concentration in rocks with X‐ray wavelength dispersive spectrometer S8 TIGER (Bruker AXS, Germany). The optimum conditions have been chosen for registration of the analyzed elements characteristic radiation and background positions. To determine the concentrations of analyzed elements accurately, the contribution of overlapping lines to the experimental intensities of the analytical lines has been taken into account. The sample of mass about 1.2 g has been pressed into pellet by the hydraulic press. Metrological studies showed that the accuracy in the determination of the concentration of analyzed elements for the developed technique meets the requirements for methods of III accuracy class. The Ta detection limits calculated for TaLβ1‐analytical and CsLα1‐analytical lines were 2.6 and 3.4 ppm, respectively. The detection limit of Ba, La, Ce, and Nd was (in ppm), respectively, 4.3, 2.7, 5.8, and 4.7. The metrological characteristics of the previously developed and adapted techniques were compared. Ta concentration in granite pegmatite samples has been quantified. The samples of the highest tantalum content have been investigated additionally by powder diffraction and X‐ray microprobe analysis. The X‐ray diffraction method turned out to be insensitive to the detection of mineral phase of tantalum niobates, while micro‐XRF allowed detecting its presence in tourmaline grains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Electroluminescent CdS : Sm and CdS : Cu, Sm phosphors have been prepared and their EL characteristics are investigated. The brightness waves of these phosphors were measured at a sinusoidal alternating voltages with a frequency of 500 Hz, 1 kHz, 2 kHz and 5 kHz. One primary and one secondary peak have been observed in each half period of the applied sinusoidal field. Time averaged EL brightness has been found to follow the Alfrey-Taylor relationB= =B 0 exp (–b/V 1/2) over a wide range of frequencies. Variation of the constants of this relation with frequency of the applied field have been studied. Variation of current across the EL cell with the applied voltage has also been investigated. The EL emission spectra show peaks at 600 and 650 nm in CdS : Sm phosphor whereas in the case of CdS : Cu, Sm phosphor the emission peak occurs at 600 nm. The observed results have been interpreted in terms of acceleration collision theory of the electroluminescence.One of the authors (RKT) expresses his gratitude to the University Grants Commission, New Delhi, for a fellowship and the Principal, S. D. J. Post Graduate College, Chandesar Azamgarh, for study leave.  相似文献   

3.
Nucleophilic substitution reaction of p‐nitrophenyl acetate (PNPA), p‐nitrophenyldiphenyl phosphinate, and pesticide parathion with different α‐nucleophiles [I] have been studied at 27 °C in different pH in the presence of a novel cationic surfactant. The kinetic study was performed spectrophotometrically under pseudo‐first order conditions with the α‐nucleophile in excess. The pKa of nucleophiles have also been determined by kinetic method. In the presence of surfactant, the rate constant increased with increasing surfactant concentration up to a limiting value. This behavior has been analyzed in quantitative terms on the basis of pseudo‐phase model of micellar catalysis. Finally the nucleophilic reactivity of hydroxamate ions has been compared with other α‐nucleophiles, like oxime, hydroxybenzotriazole, and 2‐iodosobenzoic acid (IBA). The order of cleavage of electrophilic centers, that is, C?O, P?O, and P?S have also been discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, experimental and theoretical vibrational spectral results of the molecular structures of 6,8‐dichloroflavone (6,8‐dcf) and 6,8‐dibromoflavone (6,8‐dbf) are presented. The FT‐IR and FT‐Raman spectra of the compounds have been recorded together between 4000 and 400 cm−1 and 3500–5 cm−1 regions, respectively. The molecular geometry and vibrational wavenumbers of 6,8‐dcf and 6,8‐dbf in their ground state have been calculated by using DFT/B3LYP functional, with 6‐31 + + G(d,p) basis set used in calculations. All calculations were performed with Gaussian03 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Scale factors have been used in order to compare how the calculated and experimental data are in agreement. Theoretical infrared intensities are also reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
《Annalen der Physik》2013,525(12):NA-NA
Through numerical solution of the quasi‐three‐dimensional time‐dependent Schrödinger equation, the harmonic spectra and attosecond‐pulse generation have been theoretically investigated when a model He atom is exposed to the modified three‐color chirped field (see L.‐Q. Feng, Y.‐B. Duan, and T.‐S. Chu, pp. 915–920, in this issue).  相似文献   

6.
Fourier transform microwave spectrum of cyclopentylamine, c–C5H9NH2 has been recorded, and seven transitions have been assigned for the most abundant conformer, and the rotational constants have been determined: A = 4909.46(5), B = 3599.01(4), and C = 2932.94(4). From the determined microwave rotational constants and ab initio MP2(full)/6‐311 + G(d,p) predicted structural values, adjusted r0 parameters are reported with distances (Å): rCα–Cβ = 1.529(3), rCβ–Cγ = 1.544(3), rCγ–Cγ = 1.550(3), rCα–N = 1.470(3), and angles (°) ∠CCN = 108.7(5), ∠CβCαCβ = 101.4(5), and τCβCαCβCγ = 42.0(5). The infrared spectra (4000–220 cm−1) of the gas have been recorded. Additionally, the variable temperature (−60 to −100 °C) Raman spectra of the sample dissolved in liquefied xenon was recorded from (3800–50 cm−1). The four possible conformers have been identified, and their relative stabilities obtained with enthalpy difference relative to t‐Ax of 211 ± 21 cm−1 for t‐Eq ≥ 227 ± 22 cm−1 for g‐Eq ≥ 255 ± 25 cm−1 for g‐Ax. The percentage of the four conformers is estimated to be 53% for the t‐Ax, 11 ± 1% for t‐Eq, 20 ± 2% for g‐Ax and 16 ± 2% for g‐Eq at ambient temperature. The conformational stabilities have been predicted from ab initio calculations by utilizing several different basis sets up to aug‐cc‐pVTZ from both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for the observed bands for all four conformers, which are predicted by MP2(full)/6‐31G(d) ab initio calculations to predict harmonic force constants, wavenumbers, infrared intensities, Raman activities, and depolarization ratios for all of the conformers. The results are discussed and compared to the corresponding properties of some related molecules. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Polarized FT‐IR, Raman, neutron scattering (IINS), and UV‐Vis‐NIR spectra of 2‐methyl‐4‐nitroaniline (MNA) crystal plates, powder, and solutions were measured in the 10–50 000 cm−1 range. The FT‐IR spectrum of deuterated MNA (DMNA) in KBr pellet, the Raman spectrum of the DMNA powder as well as the EPR spectrum of the MNA powder were also recorded. Complete assignments of bands to normal vibrations have been proposed. Density functional theory (DFT) calculations of wavenumbers and potential energy distribution (PED) have been performed to strengthen the assignments. The analysis of vibrational and electronic spectra has revealed vibronic couplings in MNA molecules in solutions and in crystals. In the polarized FT‐IR spectra of the crystal five unusually large bands are observed in MIR and NIR regions. Their origin is discussed in terms of N H···O, C H···O, C H···H N hydrogen bonds, intermolecular charge transfers, electrostatic interactions, and ion radicals formation in the crystal. The role of a methyl group introduction to 4‐nitroaniline is analyzed. The crystal structure of MNA at the room temperature was re‐investigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The Raman spectra (3500–50 cm−1) of the liquid and solid methylcyclohexane and the infrared spectra of the gas and solid methylcyclohexane have been recorded. The Raman band at 754 cm−1 in the liquid has been confidently assigned to the less stable axial conformer and its intensity was recorded as a function of temperature from 25 to −95 °C. By the utilization of 15 different temperatures, the enthalpy difference between the more stable chair‐equatorial conformer and the chair‐axial form was determined to be 712 ± 71 cm−1 (8.50 ± 0.84 kJ/mol). The ab initio predicted value of 710 cm−1 (8.50 kJ/mol) from the MP2(full)/6‐311G(2d,2p) calculations with and without diffuse functions is in excellent agreement. The harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational wavenumbers have been obtained for both conformers from MP2(full)/6‐31G(d) ab initio calculations. With two scaling factors of 0.88 for the C‐H stretches and 0.9 for the remaining ones, the fundamental wavenumbers have been predicted and along with the depolarization values and infrared band contours (B‐type for A″ modes) a complete vibrational assignment has been made for the chair‐equatorial conformer. Predicted r0 structural parameters have been provided from adjusted parameters from ab initio MP2(full)/6‐311+G(d,p) calculations. The results are discussed and compared with the corresponding properties of some similar molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A computational analysis of ordering in pn‐alkylbenzoic acids, having 4 (4BAC), 5 (5BAC), and 6 (6BAC) alkyl chain carbon atoms, has been carried out based on quantum mechanics and intermolecular forces. The evaluation of atomic charge and dipole moment at each atomic centre has been carried out through an all‐valance electron (CNDO/2) method. The modified Rayleigh‐Schrodinger perturbation theory along with multicentered‐multipole expansion method has been employed to evaluate long‐range intermolecular interactions while a ‘6‐exp’ potential function has been assumed for short‐range interactions. The total interaction energy values obtained through these computations were used to calculate the probability of each configuration at room temperature, nematic‐isotropic transition temperature and above transition temperature using the Maxwell‐Boltzmann formula. A comparative picture of molecular parameters like total energy, binding energy and total dipole moment has been given. A model has been developed to describe the nematogenicity of these acids in terms of their relative order with molecular parameter introduced in this article.  相似文献   

11.
The algebraic structure and topological properties of the hyperbolic tangent group are considered and it is proved that a group- (Lorentz-) theoretic realization will not sufficiently reflect the hyperbolic tangent group as a whole.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 89–93, May, 1976.The author wishes to express his appreciation to D. D. Ivanenko for remarks and useful criticism.  相似文献   

12.
The present study describes the green method for the preparation of chitosan loaded with silver nanoparticles (CS‐AgNPs) in the presence of 3 different extracted essential oils. The essential oils play dual roles as reductant and capping agents. The reducing power and DPPH (2,2‐diphenyl‐1‐picrylhydrazyl) assay for the 3 essential oils—Thymus syriacus (T), wild mint (M), and rosemary (R)—have been reported. The preparation of CS‐AgNPs was performed by 2 steps. The 3 previously extracted essential oils have been used as reducing and capping agent in the first step, while in the second step, silver nanoparticles were integrated in chitosan. The integration of AgNPs in the structure of chitosan was confirmed by ultraviolet‐visible, Fourier transform infrared spectroscopy, scanning electron microscopy techniques, and energy dispersive X‐ray. Surface plasmon resonance confirmed the formation of CS‐AgNPs with maximum absorbance at λmax between 405 ‐ 410 and 410 ‐ 430 nm for colloidal and films of CS‐AgNPs, respectively. The intensity of bands at 3408 cm?1 in the fourier transform infrared spectroscopy measurements was decreased substantially and shifted slightly to lower frequency (?υ = 43 cm?1). Scanning electron microscopy shows a spherical morphology of AgNPs with size of 62 nm for both colloidal and film samples, and energy dispersive X‐ray analysis shows peaks confirming AgNPs formation.  相似文献   

13.
Two strong bands centered at 446 and 607 cm−1 have been observed in the FT‐Raman spectrum of almandine [Fe3Al2(SiO4)3] excited with 1064 nm, which were completely absent in the corresponding dispersive Raman spectra obtained using 488, 514.5 and 532 nm excitation. Furthermore, the mentioned strong bands have not been registered in the anti‐Stokes side of the FT‐Raman spectrum, and were therefore assigned to laser‐induced fluorescence bands. Their appearance is related to the presence of rare‐earth element traces as impurities in the almandine sample. Additionally, the FT‐Raman (and dispersive Raman) spectrum of the isomorphous spessartine [Mn3Al2(SiO4)3] mineral has been introduced, which did not show the presence of these fluorescence emission bands. The purity of the minerals was confirmed by study of their powder X‐ray diffraction (PXRD) patterns. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
First principles molecular orbital and plane‐wave ab initio calculations have been used to investigate the structural and energetic properties of a new cage compound 2, 4, 6, 8, 12‐pentanitro‐10‐(3, 5, 6‐trinitro (2‐pyridyl))‐2, 4, 6, 8, 12‐hexaazatetracyclo [5.5.0.03,11.05,9]dodecane (PNTNPHATCD) in both the gas and solid phases. The molecular orbital calculations using the density functional theory methods at the B3LYP/6‐31G(d,p) level indicate that both the heat of formation and strain energy of PNTNPHATCD are larger than those of 2, 4, 6, 8, 10, 12‐hexanitro‐2, 4, 6, 8, 10, 12‐hexaazatetracyclo [5.5.0.0.0] dodecane (CL‐20). The infrared spectra and the thermodynamic property in gas phase were predicted and discussed. The calculated detonation characteristics of PNTNPHATCD estimated using the Kamlet–Jacobs equation equally matched with those of CL‐20. Bond‐breaking results on the basis of natural bond orbital analysis imply that C–C bond in cage skeleton, C–N bond in pyridine, and N–NO2 bond in the side chain of cage may be the trigger bonds in the pyrolysis. The structural properties of PNTNPHATCD crystal have been studied by a plane‐wave density functional theory method in the framework of the generalized gradient approximation. The crystal packing predicted using the Condensed‐phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force fields belongs to the Pbca space group, with the lattice parameters a = 20.87 Å, b = 24.95 Å, c = 7.48 Å, and Z = 8, respectively. The results of the band gap and density of state suggest that the N–NO2 bond in PNTNPHATCD may be the initial breaking bond in the pyrolysis step. As the temperature increases, the heat capacity, enthalpy, and entropy of PNTNPHATCD crystal all increase, whereas the free energy decreases. Considering that the cage compound has the better detonation performances and stability, it may be a superior high energy density compound. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper reports on room‐temperature infrared (IR) and Raman studies and vibrational characteristics of amide and thiocyano groups of R‐NH‐CO‐CH2‐SCN n‐alkylamides of thiocyanoacetic acid (R = C8H17, C9H19, C12H25 and C14H29). Their molecular structure has been proposed on the basis of optimization process. The experimental wavenumbers have been compared to those obtained from discrete Fourier transform (DFT) quantum chemical calculations performed with the use of B3LYP/6–31G(d,p) approximation. The role of the hydrogen bonds in the stabilization of the structure has been analyzed. It was found that the hydrogen bonding and strong dynamic interactions between the unit cell components are responsible for the deviation of several theoretical wavenumbers from the experimental ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The new Schiff base 1‐[(2‐{1‐[(dicyclohexylamino)‐methyl]‐1H‐indol‐3‐yl}‐ethylimino)‐methyl]naphthalen‐2‐ol (HL) was prepared from 1‐{[2‐(1H‐Indol‐3‐yl)‐ethylimino] methyl}‐naphthalen‐2‐ol and dicyclohexyl amine. From this Schiff base, monomeric complexes [M (L)n (H2O)2 Cl2] with M = Cr, Fe, Mn, Cd, and Hg were synthesized and characterized based on elemental analysis (EA), FT‐IR, mass(MS), UV‐visible, thermal analysis, magnetic moment, and molar conductance. The results showed that the geometrical structural were octahedral geometries for the Cr(III) and Fe(III) complexes, square planer for Pd(II) complex, and tetrahedral for Mn(II), Cd(II), and Hg(II) complexes. Kinetic parameters such as ΔE*,ΔH*, ΔG*, and K of the thermal decomposition stages were calculated from the TGA curves using Coats‐Redfern method. Additionally, density functional theory (DFT) was applied for calculations of both electronic structure and spectroscopic properties of synthesized Schiff base and its complexes. The analysis of electrostatic potential (EPS) maps correlates well with the computed energies providing on the dominant electrostatic nature of N‐H‐‐‐O interactions. The biological activities had been tested in vitro against Staphylococcus aureus, Pseudomonas aeruginosa, as well fungi like Penicillium expansum, Fusarium graminearum, Macrophomina phasealina, and Candida albicans bacteria in order to assess their antimicrobial potential.  相似文献   

17.
Conformational preferences of glutaric, 3‐hydroxyglutaric and 3‐methylglutaric acid, and their mono‐ and dianions have been investigated with the aid of NMR spectroscopy. In contrast to succinic acid, glutaric acid displays essentially statistical conformational equilibria in polar and non‐polar solutions of high and low hydrogen‐bonding ability with no clear evidence for intramolecular hydrogen‐bonding interactions. The acid ionization constant ratios, K 1/K2, in D2O and DMSO of glutaric, 3‐hydroxyglutaric, and 3‐methylglutaric acids also indicate that intramolecular interactions are much less important than, or indeed insignificant, for shorter‐chain acids. FTIR studies on 3‐methylglutaric acid indicate some preference for either association with solvent or dimerization, depending on the solvent, rather than intramolecular hydrogen bonding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
DFT calculations involving the B3LYP functional and 6‐31G(d) basis set have been performed to rationalize the reactivity, regioselectivity, enantioselectivity and diasteriofacial selectivity in the context of 1,3‐dipolar cycloaddition (13DC) reactions of a few acyclic and two cyclic azomethine ylides (AY) leading to enantiomeric/ diasteriomeric excess of the products. In particular, N‐substituted and C‐substituted AYs have been considered for reactions with the substituted ethylenes, maleimide, maleic anhydride and methyl acrylate. From an analysis of the results of calculation for the selected reactions, the regio‐ and exo/endostereoselectivity have been explained. Reactions were followed through transition state (TS) structure optimization, calculation of IRC and activation energies. A rationalization of the trends in regioselectivity and enantioselectivity was attempted with the help of HOMO–LUMO energies, electrophilicity differences (Δω) and an analysis of Pauling's bond order (PBO) in the TS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Transition‐metal dichalcogenides have been investigated using Raman spectroscopy both being off‐resonance and in resonance. The first‐order Raman spectra of MoS2, MoSe2, WS2 and WSe2 single crystal synthesized by vapor transport technique have been studied as a function of hydrostatic pressure (0–20 GPa) and temperature (80–300 K). Isobaric and isothermal mode‐Grüneisen parameters have been determined from the temperature and pressure‐dependent Raman spectra. The pressure dependence of the chalcogen–chalcogen and metal–chalcogen force constant has been obtained using a central force model. Separation of the temperature dependence of Raman mode wavenumbers into quasi‐harmonic and purely anharmonic contributions using measured high‐pressure Raman data allows us to extract the changes in the phonon wavenumbers arising exclusively due to anharmonic interactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
It is claimed that the current interest of tachyons and some of their unusual properties may be the result of an insufficient mathematical formalism based on Lorentz groups. The introduction of tachyons requires not only a generalization of the principle of causality, but also an extension of the principle of relativistic invariance. A method is proposed to remove a number of problematic cases in the treatment of tachyons.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 85–88, May, 1976.The author wishes to express his appreciation to D. D. Ivanenko for consideration and constructive criticism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号