首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Heterodinuclear silyl complexes of the type [(OC)3(R3Si)[Fe(mu-PPh2)Pt](CO)(PPh3)], which contain a [Fe(mu-P)Pt] triangular core, were previously reported to undergo an unprecedented dyotropic-type rearrangement involving migration of the silyl group from iron to platinum with concomitant 1,2 migration of CO from Pt to Fe. In the resulting complexes of formula [(OC)4[Fe(mu-PPh2)Pt](SiR3)(PPh3)], the Si atom occupies a cis position at the planar Pt center with respect to the phosphido bridge. DFT calculations were employed to elucidate the mechanism of this intramolecular silyl migration reaction. When the Fe-Pt precursor complex is [(OC)3(R3Si)[Fe(mu-PPh2)Pt](PPh3)2], the reaction sequence involves (i) the substitution of PPh3 by CO at Pt, (ii) the concerted migration of CO and SiR3, and (iii) the cis-trans isomerization at Pt. The calculations support the exergonic character of the overall process. An explanation for the experimental observation of only one product isomer being formed is possible via frontier molecular orbital analysis. Consistent with the experimental findings, the transition states of the migration (a species with a triply bridged intermetallic bond) and isomerization steps were found to be energetically within reach at room temperature. Additional support for the suggested mechanism also comes from the fact that relative silyl migration activities could be rationalized by the means of quantum chemistry.  相似文献   

2.
The unsaturated complexes [W2Cp2(mu-PR2)(mu-PR'2)(CO)2] (Cp = eta5-C5H5; R = R' = Ph, Et; R = Et, R' = Ph) react with HBF4.OEt2 at 243 K in dichloromethane solution to give the corresponding complexes [W2Cp2(H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which contain a terminal hydride ligand. The latter rearrange at room temperature to give [W2Cp2(mu-H)(mu-PR2)(mu-PR'2)(CO)2]BF4, which display a bridging hydride and carbonyl ligands arranged parallel to each other (W-W = 2.7589(8) A when R = R' = Ph). This explains why the removal of a proton from the latter gives first the unstable isomer cis-[W2Cp2(mu-PPh2)2(CO)2]. The molybdenum complex [Mo2Cp2(mu-PPh2)2(CO)2] behaves similarly, and thus the thermally unstable new complexes [Mo2Cp2(H)(mu-PPh2)2(CO)2]BF4 and cis-[Mo2Cp2(mu-PPh2)2(CO)2] could be characterized. In contrast, related dimolybdenum complexes having electron-rich phosphide ligands behave differently. Thus, the complexes [Mo2Cp2(mu-PR2)2(CO)2] (R = Cy, Et) react with HBF4.OEt2 to give first the agostic type phosphine-bridged complexes [Mo2Cp2(mu-PR2)(mu-kappa2-HPR2)(CO)2]BF4 (Mo-Mo = 2.748(4) A for R = Cy). These complexes experience intramolecular exchange of the agostic H atom between the two inequivalent P positions and at room-temperature reach a proton-catalyzed equilibrium with their hydride-bridged tautomers [ratio agostic/hydride = 10 (R = Cy), 30 (R = Et)]. The mixed-phosphide complex [Mo2Cp2(mu-PCy2)(mu-PPh2)(CO)2] behaves similarly, except that protonation now occurs specifically at the dicyclohexylphosphide ligand [ratio agostic/hydride = 0.5]. The reaction of the agostic complex [Mo2Cp2(mu-PCy2)(mu-kappa2-HPCy2)(CO)2]BF4 with CN(t)Bu gave mono- or disubstituted hydride derivatives [Mo2Cp2(mu-H)(mu-PCy2)2(CO)2-x(CNtBu)x]BF4 (Mo-Mo = 2.7901(7) A for x = 1). The photochemical removal of a CO ligand from the agostic complex also gives a hydride derivative, the triply bonded complex [Mo2Cp2(H)(mu-PCy2)2(CO)]BF4 (Mo-Mo = 2.537(2) A). Protonation of [Mo2Cp2(mu-PCy2)2(mu-CO)] gives the hydroxycarbyne derivative [Mo2Cp2(mu-COH)(mu-PCy2)2]BF4, which does not transform into its hydride isomer.  相似文献   

3.
The heterotrinuclear chain complex Hg[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)](2) (dppm = Ph(2)PCH(2)PPh(2)) 1 which has a transoid arrangement of the phosphine donors was used as a versatile chelating metallodiphosphine ligand owing to the easy rotation of its metal core about the Fe-Hg sigma-bonds. Its reaction with the labile Pt(0) olefin complex [Pt(C(7)H(10))(3)] yielded [HgPt{Si(OMe)(3)}Fe(2)(CO)(6){Si(OMe)(3)}(mu-dppm)(2)] 5 which resulted, after coordination of the dangling phosphine donors to Pt, from an unprecedented intramolecular rearrangement involving a very rare example of silyl ligand migration between two different metal centers, and the first one in metal cluster chemistry. The major structural differences observed between the heterometallic complexes obtained from 1 and d(10) Cu(I), Pd(0), or Pt(0) precursors have been established by X-ray diffraction. The bonding situation in the silyl migrated Pt complex 5 was analyzed and compared to those in the isoelectronic, but structurally distinct complexes obtained from Cu(I) and Pd(0) precursors, [Hg{Fe[Si(OMe)(3)](CO)(3)(mu-dppm)}(2)Cu](+) (2) and [Hg{Fe[Si(OMe)(3)](CO)(3)(mu-dppm)}(2)Pd] (4), respectively, by means of extended Hückel interaction diagrams. DFT calculations then allowed the energy minima associated with the three structures to be compared for 2, 4, and 5. All three minima are in close competition for the Pd complex 4, but silyl migration is favored by approximately 10 kcal mol(-)(1) for 5, mainly due to the more electronegative character of Pt with respect to Pd.  相似文献   

4.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

5.
[{Micro-(phthalazine-N2:N3)}Fe2(micro-CO)(CO)6](1) reacts with organolithium reagents, RLi (R = CH3, C6H5, p-CH3C6H4, p-CH3OC6H4, p-CF3C6H4, p-C6H5C6H4), followed by treatment with Me3SiCl to give the novel diiron carbonyl complexes with a saturated N-N six-membered diazane ring ligand, [{C6H4CH(R)NNCH2}Fe2(C=O)(CO)6](2, R = CH3; 3, R = C6H5; 4, R =p-CH3C6H4; 5, R =p-CH3OC6H4; 6, R =p-CF3C6H4; 7, R =p-C6H5C6H4). Compounds 4 and 5 were treated with [(NH4)2Ce(NO3)6] to afford the aryl-substituted phthalazine-coordinated diiron carbonyl compounds [(micro-{1-(p-CH3C6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](8) and [(micro-{1-(p-CH3OC6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](9), respectively. The structures of complexes 4 and 9 have been established by X-ray diffraction studies.  相似文献   

6.
Reaction of unsaturated (44e (-) skeleton) [PdPt 2(mu-PPh 2) 2(mu-P 2Ph 4)(R F) 4] 4 with Br (-) produces the saturated (48e (-) skeleton) complex [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 5 without any M-M' bond. Attempts to eliminate Br (-) of 5 with Ag (+) in CH 2Cl 2 as a solvent gives a mixture of [(R F) 2Pt (III)(mu-PPh 2) 2Pt (III)(R F) 2] and some other unidentified products as a consequence of oxidation and partial fragmentation. However, when the reaction of 5 with Ag (+) is carried out in CH 3CN, no oxidation is observed but the elimination of Br (-) and the formation of [(R F) 2(CH 3CN)Pt(mu-PPh 2)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 6 (46e (-) skeleton), a complex with a Pt-Pd bond, takes place. It is noteworthy that the reaction of 5 with TlPF 6 in CH 2Cl 2 does not precipitate TlBr but forms the adduct [(R F) 2PtTl(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 7 with a Pt-Tl bond. Likewise, 5 reacts with [AgOClO 3(PPh 3)] in CH 2Cl 2 forming the adduct [AgPdPt 2(mu-Br)(mu-PPh 2) 2(mu-Ph 2P-PPh 2)(R F) 4(PPh 3)] 8, which contains a Pt-Ag bond. Both adducts are unstable in a CH 3CN solution, precipitating TlBr or AgBr and yielding the unsaturated 6. The treatment of [NBu 4] 2[(R F) 2Pt(mu-PPh 2) 2Pd(mu-PPh 2) 2Pt(R F) 2] in CH 3CN with I 2 (1:1 molar ratio) at 233 K yields a mixture of 4 and 6, which after recrystallization from CH 2Cl 2 is totally converted in 4. If the reaction with I 2 is carried out at room temperature, a mixture of the isomers [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 9 and [NBu 4][(R F)(PPh 2R F)Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2) 2Pt(R F) 2] 10 are obtained. The structures of the complexes have been established on the bases of NMR data, and the X-ray structures of 5- 8 have been studied. The relationship between the different complexes has been studied.  相似文献   

7.
The phosphide-bridged dimolybdenum complexes (H-DBU)[Mo2Cp2(mu-PR2)(CO)4] (R= Cy, Ph; DBU = 1,8-diazabicyclo[5.4.0.]undec-7-ene) react with p-benzoquinone to give the hemiquinone complexes [Mo(2)Cp2(OC6H4OH)(mu-PR2)(CO)4]. The latter experience facile homolytic cleavage of the corresponding Mo-O bonds and react readily at room temperature with HSPh or S2Ph2 to give the thiolate complexes [Mo2Cp2(mu-PCy2)(mu-SPh)(CO)4] or [Mo2Cp2(mu-PR2)(mu-SPh)(CO)2]. In contrast, PRH-bridged substrates experience overall insertion of quinone into the P-H bond to give the anionic compounds (H-DBU)[Mo(2)Cp2{mu-PR(OC6H4OH)}(CO)4], which upon acidification yield the corresponding neutral hydrides. The cyclohexyl anion experiences rapid nucleophilic displacement of the hemiquinone group by different anions ER- (ER = OH, OMe, OC4H5, OPh, SPh) to give novel anionic compounds (H-DBU)[Mo2Cp2{mu-PCy(ER)}(CO)4], which upon acidification yield the corresponding neutral hydrides. The structure of four of these hydride complexes [PPh(OC6H4OH), PCy(OH), PCy(OMe), and PCy(OPh) bridges] was determined by X-ray diffraction methods and confirmed the presence of cis and trans isomers in several of these complexes. In addition, it was found that the hydroxyphosphide anion [Mo2Cp2{mu-PCy(OH)}(CO)4]- displays in solution an unprecedented tautomeric equilibrium with its hydride-oxophosphinidene isomer [Mo2Cp2(mu-H){mu-PCy(O)}(CO)4]-.  相似文献   

8.
Transition Metal Silyl Complexes, 44. — Preparation of the Binuclear Silyl Complexes (CO)3(R3Si)Fe(μ-PR′R′′)Pt(PPh3)2 by Oxidative Addition of (CO)3(R′R′′HP)Fe(H)SiR3 to (C2H4)Pt(PPh3)2 The complexes (CO)3(R′R′′HP)Fe(H)SiR3 ( 1 ) [PHR′R′′ = PHPh2, PH2Ph, PH2Cy; SiR3 = SiPh3, SiPh2Me, SiPhMe2, Si(OMe)3] react with Pt(C2H4)(PPh3)2 to give the dinuclear, silyl-substituted complexes (CO)3(R3Si)Fe(μ-PR′R′′)Pt(PPh3)2 ( 2 ) in high yields. Upon reaction of 2 (R = R′ R′′ = Ph) with CO, the PPh3 ligand at Pt being trans to the PPh2 bridge is exchanged, and (CO)3(Ph3Si)Fe(μ-PPh2)Pt(PPh3)CO ( 3 ) is formed. Complex 3 is characterized by an X-ray structure analysis. The rather short Fe — Si distance [233.9(2) pm] and the infrared spectrum of 3 indicate that the Fe — Pt bond is quite polar.  相似文献   

9.
The reactions between cis-[M(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (M=Pt, Pd; R=Ph, tBu, Tol 2, 3) or cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu)] (R=Ph 4, Tol 5) and cis-[Pt(C(6)F(5))(2)(thf)(2)] 1 have been investigated. Whereas [M](PPh(2)CtriplebondCtBu)(2) ([M]=cis-M(C(6)F(5))(2)) is inert towards 1, the analogous reactions starting from [M](PPh(2)CtriplebondCR)(2) or [Pt](PPh(2)CtriplebondCR)(PPh(2)CtriplebondCtBu) (R=Ph, Tol) afford unusual binuclear species [Pt(C(6)F(5))(S)mu-[C(R')dbondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]M(C(6)F(5))(2)] (R=R'=Ph, Tol, M=Pt 6 a,c, M=Pd 7 a,c; M=Pt, R'=tBu, R=Ph 8, Tol 9) containing a bis(diphenylphosphanyl)butadienyl bridging ligand formed by an unprecedented sequential insertion reaction of two P-coordinated PPh(2)CtriplebondCR ligands into a PtbondC(6)F(5) bond. Although in solution the presence of coordinated solvent S (S=(thf)(x)(H(2)O)(y)) in 6, 7 is suggested by NMR spectroscopy, X-ray diffraction analyses of different crystals of the mixed complex [Pt(C(6)F(5))mu-[C(tBu)doublebondC(PPh(2))C(PPh(2))doublebondC(Tol)(C(6)F(5))]Pt(C(6)F(5))(2)] 9 unequivocally establish that in the solid state the steric crowding of the new diphenylbutadienyl ligand formed stabilizes an unusual coordinatively unsaturated T-shaped 3-coordinated platinum(II) center. Structure determinations of the mononuclear precursors cis-[Pt(C(6)F(5))(2)(PPh(2)CtriplebondCR)(2)] (R=Ph, tBu, Tol) have been carried out to evaluate the factors affecting the insertion processes. The reactions of the platinum complexes 6 towards neutral ligands (L=CO, py, PPh(2)H, CNtBu) in a 1:1 molar ratio afford related diplatinum derivatives 10-13, whereas treatment with CNtBu (1:2 molar ratio) or 2,2'-bipy (1:1 molar ratio) results in the opening of the chelating ring to give cis,cis-[Pt(C(6)F(5))(L)(2)mu-[1-kappaC(1):2-kappaPP'-C(R)doublebondC(PPh(2))C(PPh(2))doublebondC(R)(C(6)F(5))]Pt(C(6)F(5))(2)] (14, 15). The unsaturated or solvento complexes are unstable in solution evolving firstly, through an unexpected formal 4-1 R (Ph, Tol) migration, to the intermediate diphosphanylbutadienyl isomer derivatives [Pt(C(6)F(5))(S)mu-[C(C(6)F(5))doublebondC(PPh(2))C(PPh(2))doublebondC(R)(2)]M(C(6)F(5))(2)] (16, 18) (X-ray, R=Ph, M=Pt) and, finally, to 1-pentafluorophenyl-2,3-bis(diphenylphosphanyl)naphthalene mononuclear complexes (17, 19) by annulation of a phenyl or tolyl group.  相似文献   

10.
The azadithiolate (SCH2NHCH2S) cofactor proposed to occur in the Fe-only hydrogenases forms efficiently by the condensation of Fe2(SH)2(CO)6 (1), formaldehyde, and ammonia (as (NH4)2CO3). The resulting Fe2[(SCH2)2NH](CO)6 reacts with Et4NCN to give (Et4N)2[Fe2[(SCH2)2NH](CO)4(CN)2], for which crystallographic characterization confirmed an axial N-H and an elongated C-S bond of 1.858(3) A. Primary amines RNH2 (R = Ph, t-Bu) also participate in the condensation reaction, and Fe3S2(CO)9 can be employed in place of 1. Mechanistically, the Fe2[(SCH2)2NH] moiety is shown to arise via two pathways: (i) via the intermediacy of Fe2[(SCH2OH)2](CO)6, which was detected and shown to react with amines, and (ii) via the reaction of 1 with cyclic imines (CH2)3(NR)3 (R = Ph, Me). The reaction of 1 with (CH2)6N4 (hexamethylenetetramine) gives Fe2[(SCH2)2NH](CO)6. Trace amounts of Fe2[(SCH2)2N-t-Bu](CO)6 arise via the reaction of aqueous FeSO4, formaldehyde, NaSH, and t-BuNH2 under an atmosphere of CO.  相似文献   

11.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

12.
New cobalt-containing secondary phosphine oxides [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(H)(R)}] (8 a: R=tBu; 8 b: R=Ph) were prepared by reaction of secondary phosphine oxides PhC[triple chemical bond]CP- (==O)(H)(R) (6 a: R=tBu; 6 b: R=Ph) with dppm-bridged dicobalt complex [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(6)] (2). The molecular structures of 8 a and 8 b were determined by single-crystal X-ray diffraction. Although palladium-catalyzed Heck reactions employing 8 b as ligand gave satisfying results, 8 a performed poorly in the same reaction. Judging from these results, a tautomeric equilibrium between 8 b and its isomeric form [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(Ph)}] 8 b' indeed takes place, but it is unlikely between 8 a and [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(tBu)}] (8 a'). The DFT studies demonstrated that reasonable activation energies for the tautomeric conversions can be achieved only via a bimolecular pathway. Since a tBu group is much larger than a Ph group, the conversion is presumably only feasible in the case of 8 bright harpoon over left harpoon8 b', but not in the case of 8 aright harpoon over left harpoon8 a'. Another cobalt-containing phosphine, namely, [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(NEt(2))(tBu)}] (7 a), and its oxidation product [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(NEt(2))(tBu)}] 7 a' were prepared from the reaction of PhC[triple chemical bond]CP(NEt(2))(tBu) (5 a) with 2. The molecular structures of 7 a and 7 a' were determined by single-crystal X-ray diffraction. The phosphorus atom is surrounded by substituents in a tetrahedral environment. A P--N single bond (1.676(3) A) is observed in the molecular structure of 7 a. Heck reactions employing 7 a/Pd(OAc)(2) as catalyst system exhibited efficiency comparable to that of 8 a/Pd(OAc)(2).  相似文献   

13.
Reaction of the trinuclear Pt(III)-Pt(III)-Pt(II) [(C6F5)2Pt(III)(mu-PPh2)2Pt(III)(mu-PPh2)2Pt(C6F5)2] (2) derivative with NBu4Br or NBu4I results in the formation of the trinuclear Pt(II) complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = I (3), Br (4)] through an intramolecular PPh2/C6F5 reductive coupling and the formation of the phosphine PPh2C6F5. The trinuclear Pt(II) complex [(PPh2C6F5)(C6F5)Pt(mu-PPh2)Pt(mu-PPh2)2Pt(C6F5)2] (5), which displays two Pt-Pt bonds, can be obtained either by halide abstraction in 4 or by refluxing of 2 in CH2Cl2. This latter process also implies an intramolecular PPh2/C6F5 reductive coupling. Treatment of complex 5 with several ligands (Br-, H-, and CO) results in the incorporation of the ligand to the cluster and elimination of one (X = H-) or both (X = Br-, CO) Pt-Pt bonds, forming the trinuclear complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = Br (6), H (7)] or [(PPh2C6F5)(C6F5)Pt(mu-PPh2)2Pt(mu-PPh2)(CO)Pt(C6F5)2(CO)] (8). The structures of the complexes have been established on the basis of 1H, 19F, and 31P NMR data, and the X-ray structures of the complexes 2, 3, 5, and 7 have been established. The chemical relationship between the different complexes has also been studied.  相似文献   

14.
DFT (B3LYP) calculations have been carried out in order to quantitatively evaluate the energies and stereochemistry of the accessible structures of [(dhpe)Pt(SiHR(2))](+) (dhpe = H(2)P-CH(2)-CH(2)-PH(2); R = H, CH(3), SiH(3), Cl, OMe, SMe, NMe(2)) and of [(dhpe)Pt(SiR(3))](+) (R = CH(3), Cl). A number of different isomers have been located. The expected terminal silyl or hydrido-silylene complexes are often not the most stable complexes. An isomer in which an H or an R group bridges a Pt=SiHR or Pt=SiR(2) bond is found to compete with the terminal silyl or hydrido-silylene isomers. In some cases, isomers derived from cleavage of a C-H bond and formation of a silene or disilene ligand are obtained. The structures of the platinum silyls differ from that of the equivalent alkyl complex, calculated for [(dhpe)Pt(CH(3))](+).  相似文献   

15.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

16.
Reaction of the trinuclear [NBu 4] 2[(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(R F) 2] ( 1, R F = C 6F 5) with HCl results in the formation of the unusual anionic hexanuclear derivative [NBu 4] 2[{(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(mu-Cl)} 2] ( 4, 96 e (-) skeleton) through the cleavage of two Pt-C 6F 5 bonds. The reaction of 4 with Tl(acac) yields the trinuclear [NBu 4][(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(acac)] ( 5, 48 e (-) skeleton), which is oxidized by Ag (+) to form the trinuclear compound [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(acac)][ClO 4] ( 6, 46 e (-) skeleton) in mixed oxidation state Pt(III)-Pt(III)-Pt(II), which displays a Pt-Pt bond. The reduction of 6 by [NBu 4][BH 4] gives back 5. The treatment of 6 with Br (-) (1:1 molar ratio) at room temperature gives a mixture of the isomers [(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-Br)Pt(mu-PPh 2) 2Pt(acac)], having Br trans to R F ( 7a) or Br cis to R F ( 7b), which are the result of PPh 2/C 6F 5 reductive coupling. The treatment of 5 with I 2 (1:1 molar ratio) yields the hexanuclear [{(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-I)Pt(mu-PPh 2) 2Pt(mu-I)} 2] ( 8, 96 e (-) skeleton), which is easily transformed into the trinuclear compound [(PPh 2R F)(R F)Pt(mu-PPh 2)(mu-I)Pt(mu-PPh 2) 2Pt(I)(PPh 3)] ( 9, 48 e (-) skeleton). Reaction of [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(NCMe) 2] ( 10) with I 2 at 213 K for short reaction times gives the trinuclear platinum derivative [(R F) 2Pt(mu-PPh 2) 2Pt(mu-PPh 2) 2Pt(I) 2] ( 11, 46e skeleton) in mixed oxidation state Pt(III)-Pt(III)-Pt(II) and with a Pt-Pt bond, while the reaction at room temperature and longer reactions times gives 8. The structures of the complexes have been established by multinuclear NMR spectroscopy. In particular, the (195)Pt NMR analysis, carried out also by (19)F- (195)Pt heteronuclear multiple-quantum coherence, revealed an unprecedented shielding of the (195)Pt nuclei upon passing from Pt(II) to Pt(III). The X-ray diffraction structures of complexes 4, 5, 6, 9, and 11 have been studied. A detailed study of the relationship between the complexes has been carried out.  相似文献   

17.
Tripodal bis(imidazole) thioether ligands, (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OR)C(CH3)2SR' (BIT(OR,SR'); R = H, CH3; R' = CH3, C(CH3)3, C(C6H5)3), have been prepared, offering the same N2S donor atom set as the CuM binding site of the hydroxylase enzymes, dopamine beta hydroxylase and peptidylglycine hydroxylating monooxygenase. Isolable copper(I) complexes of the type [(BIT(OR,SMe))Cu(CO)]PF6 (3a and 3b) are produced in reactions of the respective tripodal ligands 1a (R = H) and 1b (R = Me) with [Cu(CH3CN)4]PF6 in CH2Cl2 under CO (1 atm); the pyramidal structure of 3a has been determined crystallographically. The infrared (IR) nu(CO)'s of 3a and 3b (L = CO) are comparable to those of the Cu(M)-carbonylated enzymes, indicating similar electronic character at the copper centers. The reaction of [(BIT(OH,SMe))Cu(CH3CN)]PF6 (2a) with dioxygen produces [(BIT(O,SOMe))2Cu2(DMF)2](PF6)2 (4), whose X-ray structure revealed the presence of bridging BIT-alkoxo ligands and terminal -SOMe groups. In contrast, oxygenation of 2b (R = Me) affords crystallographically defined [(BIT(OMe,SMe))2Cu2(mu-OH)2](OTf)2 (5), in which the copper centers are oxygenated without accompanying sulfur oxidation. Complex 5 in DMF is transformed into five-coordinate, mononuclear [CuII(BIT(OMe,SMe))(DMF)2](PF6)2 (6). The sterically hindered BIT(OR,SR') ligands 9 and 10 (R' = t-Bu; R = H, Me) and 11 and 12 (R' = CPh3; R = H, Me) were also prepared and examined for copper coordination/oxygenation. Oxygenation of copper(I) complex 13b derived from the BIT(OMe,SBu-t) ligand is slow, relative to 2b, producing a mixture of (BIT(OMe,SBu-t))2Cu2(mu-OH)2-type complexes 14b and 15b in which the -SBu-t group is uncoordinated; one of these complexes (15b) has been ortho-oxygenated on a neighboring aryl group according to the X-ray analysis and characterization of the free ligand. Oxygenation of the copper(I) complex derived from BIT(OMe,SCPh3) ligand 12 produces a novel dinuclear disulfide complex, [(BIT(OMe,S)2Cu2(mu-OH)2](PF6)2 (17), which is structurally characterized. Reactivity studies under anaerobic conditions in the presence of t-BuNC indicate that 17 is the result of copper(I)-induced detritylation followed by oxygenation of a highly reactive copper(I)-thiolate complex.  相似文献   

18.
The N-heterocyclic stannylenes (NHSns), [(Dipp) N(CH(2))(n)N(Dipp)S n] (Dipp = 2,6- (i)Pr(2)C(6)H(3); n = 2, 1; n = 3, 5) and [((t)Bu) N(CHMe)(2)N((t)Bu)S n] (10) are competent ligands toward a variety of transition metal centers, as seen in the complexes [W(CO)(5)·1] (2), [(OC)(4)Fe(μ-1)(2)Fe(CO)(4)] (3), [(OC)(4)Fe(μ-1)Fe(CO)(4)] (4), [Fe(CO)(4)·5](n) (6, n = 1 or 2), [(OC)(4)Fe(μ-5)Fe(CO)(4)] (7), [Ph(3)PPt(μ-1)(2)PtPPh(3)] (8), [Fe(CO)(4)·10] (11), and [(η(5)-C(5)H(5))(OC)(2)Mn·10] (12). X-ray crystallographic studies show that the NHSns are structurally largely unperturbed binding to the metal, but in contrast to the parent NHCs, NHSns often adopt a bridging position across dinuclear metal units. The balance between terminal and bridging positions for the stannylene is evidently closely balanced as shown by the observation of both monomers and dimers for 6 in the solid state and in solution. (119)Sn and (57)Fe Mo?ssbauer spectroscopy of the complexes shows the tin atoms in such complexes to be consistent with electron deficient Sn(II) centers.  相似文献   

19.
The new diphosphine ligands Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OC(O)C(6)H(4)PPh(2) (1: X=NH; 2: X=NPh; 3: X=O) and Ph(2)PC(6)H(4)C(O)O(CH(2))(2)O(CH(2))(2)OC(O)C(6)H(4)PPh(2) (5) as well as the monophosphine ligand Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OH (4) have been prepared from 2-diphenylphosphinobenzoic acid and the corresponding amino alcohols or diols. Coordination of the diphosphine ligands to rhodium, iridium, and platinum resulted in the formation of the square-planar complexes [(Pbond;P)Rh(CO)Cl] (6: Pbond;P=1; 7: Pbond;P=2; 8: Pbond;P=3), [(Pbond;P)Rh(CO)Cl](2) (9: Pbond;P=5), [(P-P)Ir(cod)Cl] (10: Pbond;P=1; 11: Pbond;P=2; 12: Pbond;P=3), [(Pbond;P)Ir(CO)Cl] (13: Pbond;P=1; 14: Pbond;P=2; 15: Pbond;P=3), and [(Pbond;P)PtI(2)] (18: Pbond;P=2). In all complexes, the diphosphine ligands are trans coordinated to the metal center, thanks to the large spacer groups, which allow the two phosphorus atoms to occupy opposite positions in the square-planar coordination geometry. The trans coordination is demonstrated unambiguously by the single-crystal X-ray structure analysis of complex 18. In the case of the diphosphine ligand 5, the spacer group is so large that dinuclear complexes with ligand 5 in bridging positions are formed, maintaining the trans coordination of the P atoms on each metal center, as shown by the crystal structure analysis of 9. The monophosphine ligand 4 reacts with [[Ir(cod)Cl](2)] (cod=cyclooctadiene) to give the simple derivative [(4)Ir(cod)Cl] (16) which is converted into the carbonyl complex [(4)Ir(CO)(2)Cl] (17) with carbon monoxide. The crystal structure analysis of 16 also reveals a square-planar coordination geometry in which the phosphine ligand occupies a position cis with respect to the chloro ligand. The diphosphine ligands 1, 2, 3, and 5 have been tested as cocatalysts in combination with the catalyst precursors [[Rh(CO)(2)Cl](2)] and [[Ir(cod)Cl](2)] or [H(2)IrCl(6)] for the carbonylation of methanol at 170 degrees C and 22 bar CO. The best results (TON 800 after 15 min) are obtained for the combination 2/[[Rh(CO)(2)Cl](2)]. After the catalytic reaction, complex 7 is identified in the reaction mixture and can be isolated; it is active for further runs without loss of catalytic activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号