首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ternary phase diagram for N-[3-lauryloxy-2-hydroxypropyl]-L-arginine L-glutamate (C12HEA-Glu), a new amino acid-type surfactant, /oleic acid (OA)/water system was established. The liquid crystal and gel complex formations between C12HEA-Glu and OA were applied to a preparation of water-in-oil (W/O) emulsions. Stable W/O emulsions containing liquid paraffin (LP) as the oil and a mixture of C12HEA-Glu and OA as the emulsifier were formed. The preparation of stable W/O emulsions containing 85 wt% water phase was also possible, in which water droplets would be polygonally transformed and closely packed, since the maximum percentage of inner phase is 74% assuming uniformly spherical droplets. Water droplets would be taken into the liquid crystalline phase (or the gel complex) and the immovable water droplets would stabilize the W/O emulsion system. The viscosity of emulsions abruptly increased above the 75 wt% water phase (dispersed phase). The stability of W/O emulsions with a lower weight ratio of OA to C12HEA-Glu and a higher ratio of water phase was greater. This unusual phenomenon may be related to the formation of a liquid crystalline phase between C12HEA-Glu and OA, and the stability of the liquid crystal at a lower ratio of oil (continuous phase). W/O and oil-in-water (O/W) emulsions containing LP were selectively prepared using a mixture of C12HEA-Glu and OA since the desirable hydrophile-lipophile balance (HLB) number for the emulsification was obtainable by mixing the two emulsifiers.  相似文献   

2.
Severe viscous fingering during water flooding of heavy oil leaves a large amount of oil untouched in the reservoir. Improving sweep efficiency is vital for enhancing heavy oil recovery. This study presented a laboratory study for improving sweep efficiency by alkaline flooding in heavy oil Reservoirs. This included glass-etched micromodel flooding tests, one-dimensional flooding experiments and three-dimensional physical model study. The micromodel tests show that W/O droplet flow plays a prominent role in the alkaline flooding to improve sweep efficiency. There is a minimum alkaline concentration that generates the W/O droplet flow, and the W/O droplet flow is more obvious with the alkaline concentration increasing. A series of flood tests were conducted using 325 mPa · s, 2000 mPa · s, and 3950 mPa · s heavy oils to assess the effectiveness of W/O droplet flow in alkaline flooding for enhanced heavy oil recovery. The flood tests results demonstrate the considerable potential for improved heavy oil recovery by alkaline flooding, and moreover, the incremental oil recovery has been found to increase as the alkaline concentration increases. The result obtained in three-dimensional physical model study indicates that the sweep area can be greatly improved by the formation of W/O droplet flow in alkaline flooding.  相似文献   

3.
Considering the high cost and injection pressure of conventional foam flooding, foam flooding with low gas/liquid ratio was proposed to enhance the heavy oil recovery. A foamer containing 0.2 wt% α -olefin sulfonate, 0.1 wt% HPAM and 0.5 wt% Na2CO3 was selected for Zhuangxi heavy oil. Then the foam stability and low gas/liquid ratio foam flooding were studied via micro model and sand pack experiments. The results indicate that the foam is much more stable in heavy oil than in diesel; in flooding tests, this foamer with gas/liquid ratio of 0.2:1 increases the oil recovery by 39.8%, which is nearly 11% higher than ASP solution in terms of the same injection volume (0.3PV) and agents.  相似文献   

4.
The double emulsion technology has a potential effect on the development of diversity and quality of functional foods by means of decreasing oil or salt concentration, encapsulating and controlling release of valuable components. In this study, it was aimed to formulate stable double emulsions to be used in food systems. W1/O ratios of primary emulsions, stabilized by polyglycerol polyricinoleate (PGPR), were designed as 2:8 and 4:6, and (W1/O)/W2 ratios of the double emulsions were used as 2:8 and 4:6. W/O/W phase ratios, homogenization methods applied to primary emulsion (high-speed homogenization, ultrasonic homogenization), and emulsifier types used in W2 phase [sodium caseinate (SC), xanthan gum, lecithin-whey protein concentrate] were used as independent variables. Particle size and distributions, stability, encapsulation efficiency (EE), rheological properties, long-term stability, and morphological properties of the double emulsions were investigated.

The double emulsions prepared with SC and (W1/O)/W2 ratio of 4:6, were found to have the higher stability values, higher apparent viscosity, and lower particle size. High-speed homogenization applied to primary emulsion reduced particle size of the double emulsion and increased apparent viscosity, but did not affect stability and EE of the double emulsions, significantly.  相似文献   

5.
To find an optimal formulation of oil-in-water (O/W) emulsions (φo = 0.05), the effect of emulsifier nature and concentration, agitation speed, emulsifying time, storage temperature and their mutual interactions on the properties and behavior of these dispersions is evaluated by means of an experimental design (Nemrodw software). Long-term emulsion stability is monitored by multiple light scattering (Turbiscan ags) and acoustic attenuation spectroscopy (Ultrasizer). After matching surfactant HLB and oil required HLB, a model giving the Sauter diameter as a function of emulsifier concentration, agitation speed and emulsification time is proposed. The highest stability of C12E4-stabilized O/W emulsions is observed with 1% emulsifier.  相似文献   

6.
A three-step model of the transitional phase inversion (TPI) process for the formation of water-in-oil (W/O) emulsions is presented. Three types of emulsions exist in an emulsification process at different oil–water ratios and hydrophilic–lipophilic balance (HLB). A stable W/O emulsion was obtained using Sorbitan oleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) with a specified HLB and oil volume fraction. Oil was added into water, which contained the water-soluble surfactant, to dissolve the oil-soluble surfactant. This route allowed TPI to occur, and an interesting emulsification process was observed by varying the HLB, which corresponded to the change in the oil–water ratio. Two types of emulsions in the emulsification process were found: transition emulsion 1 (W/O/W high internal phase emulsion) and target emulsion 2 (W/O emulsion with low viscosity). This study describes the changes that occurred in the emulsification process.  相似文献   

7.
The influence of polyglycerol polyricinoleate (PGPR) and biopolymers (gelatin and sodium alginate) on the stabilization of water-in-oil (W/O) emulsions was investigated to improve the encapsulation efficiency (EE) of water-in-oil-in-water (W/O/W) emulsions containing mango seed kernel extract (MSKE). The physical properties and EE of the emulsions were found to depend more strongly on PGPR than on biopolymers. High EE values of MSKE were obtained when W/O emulsions stabilized by 4–8 wt% PGPR were incorporated with 1–5 wt% gelatin, or by 6–8 wt% PGPR incorporated with 0.5–1.5 wt% sodium alginate in the inner aqueous phase.  相似文献   

8.
Previous studies have focused on monomeric naphthenic acids and their ability to stabilize emulsions, but little has been reported on C80-tetraacids and their ability to function as an emulsifier. In this article, we report on the chemistry of the C80-tetraacids as an emulsion stabilizer and also on the role this acid has in mixed monoacid-tetraacid systems. The study focuses on the type of emulsion formed and the stability of these emulsions with respect to water cut, pH, salinity of the water phase, and type of counterion. Interfacial behavior and the electrostatic properties of the emulsion were studied in order to determine which of the acids were present at the interface and which of the acids gave the largest contribution to the emulsion stability. It was found that C80-tetraacids form only O/W emulsion under the conditions studied. Addition of monoacid to the system did not change the type of emulsion formed. Highest stability was seen for emulsions containing both monoacid and tetraacids. When adding NaCl a phase inversion from O/W to W/O emulsion appeared around a concentration of 2 wt% of NaCl.  相似文献   

9.
The thickening properties of aqueous solutions of HHM-HEC (hydrophobically-hydrophilically modified hydroxyethylcellulose) and the emulsification mechanisms of HHM-HEC/water/oil systems were investigated. A dramatic increase in viscosity was observed with increased HHM-HEC concentration in water, caused by aggregation of hydrophobic alkyl chains. At higher concentrations of HHM-HEC (above 0.6 wt%) in water, it forms an elastic gel, which has good thixotropic properties and a high yield value. O/W (oil-in-water) type emulsions were obtained using HHM-HEC, which can emulsify various kinds of oil, including hydrocarbon, silicone, and perfluoropolymethylisopropyl ether. The viscosity of these emulsions depends only upon the oil volume fraction, not on the kind of oil. In addition, the oil particle size in the emulsions remained constant after a certain period because HHM-HEC formed a strong gel network structure and a protective layer, which prevented the emulsion from coalescing. Measurements of interfacial tension revealed that the alkyl chains in HHM-HEC did not significantly lower the interfacial tension at the water/oil interface when 0.5 wt% of HHM-HEC was added to water. Steady flow and oscillatory experimental results show that the rheological behavior of HHM-HEC/water/oil emulsions was similar to that of aqueous solutions of HHM-HEC. In the HHM-HEC/water/oil emulsion system, oil droplets were dispersed and kept stable in the strong gel structure of HHM-HEC. The aqueous solution of HHM-HEC showed salt resistance. It is thought to be due to sulfonic acid groups in HHM-HEC. The stability of the emulsion using HHM-HEC is based on both protective colloidal effects and associative thickening caused by alkyl chains in HHM-HEC.  相似文献   

10.
In presented research, multiple W/O/W emulsions were developed by using experimental design method. A 24-1 fractional factorial design was performed by varying the following input parameters: primary polymeric emulsifier (PEG 30-dipolyhydroxystearate) concentration (0.8% and 2.4%), secondary polymeric emulsifier (Poloxamer 407) concentration (0.8% and 1.2%), electrolyte magnesium sulfate heptahydrate (0.08% and 0.4%) and electrolyte sodium chloride (0.08% and 0.4%). Multiple emulsions were prepared by a two-step emulsification process. Obtained emulsions were characterized with rheological measurements, conductivity and centrifugation tests. Factorial analysis revealed that the concentration of the primary emulsifier was the predominant factor influencing the phase separation, conductivity and maximal apparent viscosity. Additionally, electrolyte magnesium sulfate heptahydrate was more efficient in stabilizing these systems, compared to sodium chloride. The applied fractional factorial design method enabled determination of the optimal concentrations of the primary and secondary emulsifier, as well as the concentration of electrolytes, in order to obtain W/O/W emulsions with desired maximal apparent viscosities, low values of conductivity and without phase separation after centrifugation.  相似文献   

11.
Poly(styrene-co-methacrylic acid) (PS-co-MAA) particles were synthesized via surfactant-free emulsion polymerization and then used as particulate emulsifiers for preparation of Pickering emulsions. Our results showed that adjusting the solution pH can tune the wettability of PS-co-MAA particles to stabilize either water-in-oil (W/O) or oil-in-water (O/W) Pickering emulsions. Stable W/O emulsions were obtained with PS-co-MAA particles at low pH values due to their better affinity to the dispersed oil phase. In contrast, increasing the pH value significantly changed the stabilizing behavior of the PS-co-MAA particles, leading to the phase inversion and formation of stable O/W emulsions. We found that the oil/water ratio had a significant influence on pH value of the phase inversion. It decreased with decreasing the oil/water ratio, and no phase inversion occurred when the styrene volume fraction reduced to 10 %. Additionally, macroporous polystyrene (PS) foam and PS microspheres were obtained via polymerization of Pickering high internal phase emulsion (Pickering HIPE) and O/W Pickering emulsion, respectively.  相似文献   

12.
The emulsification processes, during which acylglycerols/zinc stearate emulsifier, water, and oil phase formed ternary systems, such as water-in-oil (W/O) emulsions, oil-in-water (O/W) dispersions, and unstable oil-water mixtures, were investigated in order to characterize the progressive transformations of the dispersed systems. The type, structure, and phase transitions of the systems were found to be determined by temperature and water phase content. Crystallization of the emulsifier caused the destabilization and subsequent phase inversion of the emulsions studied, at a temperature of 60-61 degrees C. The observed destabilization was temporary and led, at lower temperature, to W/O emulsions, "O/W + O" systems, or O/W dispersions, depending on the water content. Simultaneous emulsification and cooling of 20-50 wt % water systems resulted in the formation of stable W/O emulsions that contained a number of large water droplets with dispersed oil globules inside them ("W/O + O/W/O"). In water-rich systems (60-80 wt % of water), crystallization of the emulsifier was found to influence the formation of crystalline vesicle structures that coexisted, in the external water phase, with globules of crystallized oil phase. Results of calorimetric, rheological, and light scattering experiments, for the O/W dispersions obtained, indicate the possible transition of a monostearoylglycerol-based alpha-crystalline gel phase to a coagel state, in these multicomponent systems.  相似文献   

13.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

14.
Different microemulsions were prepared with and without mefenamic acid (MFA). The base microemulsion was mainly composed of distilled water; the aqueous phase, propylene carbonate; the oil phase, potassium oleate; the surfactant, and finally di-ethylene glycol; the cosurfactant. The effect of mixing ionic (potassium oleate) with nonionic (Tween-20) surfactant was investigated via constructing the phase diagrams of such systems. Changes in conductivity and viscosity of the freshly prepared microemulsion over time were monitored as an indication for the stability of the microemulsion. Measurements were carried out at room temperature, after a freeze-thaw cycle and also after storage for 3 days at 60°C, where the latter is treated as an accelerated test for the time-temperature effects on the stability of a microemulsion. It was found that a set of surfactants, instead of a single surfactant, and inclusion of cosurfactant resulted in a broader region where a stable microemulsion is predominant. At a mass ratio of 1:2 of potassium oleate to Tween-20, O/W microemulsions were found to have maximum stability among all examined systems, under the accelerated test, such that they have a minimum portion of combined surfactants and cosurfactant of 60 wt% and maximum of 80 wt%. With the aforementioned specifications, no phase separation and neither significant change in the conductivity nor in the viscosity was observed in any of the examined systems after subjecting them both to the accelerated and freeze-thaw cycle test, indicating that such systems were thermodynamically stable. Samples of micro emulsions passing previous tests were further subjected to an acidic medium by dispersing 1 g of MFA-containing microemulsion in 10 g HCl solution (pH 1) in a shaking water bath at 37°C, for a 6 hour period. The maximum solubility of MFA in a stable microemulsion was approximately 5 wt%, evaluated at room temperature.  相似文献   

15.
The thickening properties and association behavior of aqueous solutions of HHM-HEC (hydrophobically-hydrophilically modified hydroxyethyl cellulose) with various hydrophobic and hydrophilic substitution degrees were investigated. The HHM-HEC was used as an oil-in-water emulsifier and stable compositional regions were investigated as a function of polymer concentration and substitution degree. The viscosity of aqueous solutions of HHM-HEC increased drastically at lower concentration for HHM-HEC with a higher hydrophobic/hydrophilic substitution ratio. The intensity ratio of the first and third vibrational bands of pyrene (I(1)/I(3)) decreased with the increase of HHM-HEC concentration and the I(1)/I(3) reached a lower plateau at a lower concentration for HHM-HEC with a higher hydrophobic/hydrophilic substitution ratio. The concentration ranges of HHM-HEC solutions which stabilize O/W emulsions differ by the hydrophobic/hydrophilic substitution ratio. However the viscosity ranges of these HHM-HEC solutions were almost the same regardless of the hydrophobic/hydrophilic substitution ratio. At the suitable concentration range for emulsification, HHM-HEC networks have two properties: (1) oil particle retention capacity and (2) laxation which can trap emulsified particles.  相似文献   

16.
黄登发  刘严华  王峰 《应用化学》2018,35(10):1234-1242
聚乙烯亚胺(PEI)及其乳状液被广泛用于酶固定化、基因治疗、污水处理等领域。 为提高PEI乳状液的稳定性,促进其应用,本文采用部分析因试验法考察了影响PEI水溶液/石蜡乳状液(W/O)稳定性的主因素和各因素间交互作用。 结果表明,乳化剂用量和PEI的水相质量分数是影响PEI水溶液/石蜡乳液稳定性的主因素。 PEI的水相质量分数和油/水体积比的交互作用最显著。 优化后,制备最稳定的PEI水溶液/石蜡乳状液(W/O)的条件是:m(Span-80):m(Tween-80)=6:1,PEI的水相质量分数为5%,乳化剂用量为0.07 g/mL,V(石蜡):V(PEI水溶液)=6:4,均质时间为3 min,转速为6000 r/min。 在优化条件下制备的PEI水溶液/石蜡乳状液在放置7 d后乳状液的外观无明显变化,这表明所制备的PEI水溶液/石蜡乳状液具有良好的稳定性。  相似文献   

17.
The formation of heavy crude oil in water (O/W) emulsion by a low energy laminar controlled flow has been investigated. The emulsion was prepared in an eccentric cylinder mixer. Its geometry allows the existence of chaotic flows that are able to mix well highly viscous fluids. This new mixer design is used to produce high internal phase ratio emulsions for three oils: castor oil and two heavy crude oils of different initial viscosity (Zuata and Athabasca crude oils). The influence of the stirring conditions, geometrical parameters, and water volume fraction on the rheological properties of the resulting O/W emulsion is studied.  相似文献   

18.
Multiple emulsions of water in oil in water (W/O/W) have been used as a novel technique to overcome unpleasant taste of drugs. The drug is dissolved in the inner water phase and is released throughout the oil phase in the presence of synthetic gastric juice

Yield of preparation and stability have been studied using various sets of different inner (emulsifier I) and outer (emulsifier II)emulsifiers

Combination of anionic-nonionic emulsifiers yielded optimal results: High yield of preparation, high stability and complete release of the drug in synthetic gastric juice.  相似文献   

19.
The worldwide demand for energy continues to grow and the production of heavy crude is escalating due to shortage of conventional light crude. The transportation of heavy crude oil from the head-well to the refinery is a challenging task due to its high viscosity and low API gravity. Catalytic aquathermolysis is one of the most significant and cost-effective viscosity reduction techniques employed in the up gradation of the crude oil at elevated temperatures and hence to enhance oil extraction process. In this study, catalytic aquathermolysis of Omani heavy crude oil was performed using magnetite nanoparticles (NPs). The NPs were synthesised by reverse co-precipitation method using iron salts in alkaline medium. The synthesised NPs were characterized using Scanning Electron Microscopy (SEM), X-Ray Powder Diffraction (XRD), Energy Dispersive X- Ray analysis (EDX) and Fourier Transform Infrared Spectroscopy (FTIR). The XRD results exhibited a characteristic peak confirming the high purity of iron oxide nanoparticles. The FTIR spectral analysis designated two well-defined peaks corresponding to wave numbers of 500 ?cm?1 and 630 ?cm?1, endorses the presence of Fe–O. The catalytic aquathermolysis experiments were carried out in a Parr high temperature-high pressure batch reactor at different experimental conditions. The processing parameters in temperature range of 250 ?°C - 300 ?°C, 0.1% to 0.3% catalyst loading, water to oil ratio of 1:7 to 3:7 with 24–72 ?h of reaction time. The initial pressure in the reactor was maintained at 32 ?bars and the optimization was performed using the Taguchi method to maximize the level of heavy oil. An orthogonal array was employed to analyse the effects of mean response and mean signal-to-noise ratio (S/N) to upgrade the heavy oil. The regression analysis was used to establish a relationship between the viscosity and experimental parameters. The experimental outcomes indicates that the maximum reduction in viscosity occurred at a processing temperature of 300 ?°C, 1:7 ?W/O ratio, 0.1 ?wt% of catalyst concentration and 48 ?h of reaction time. Similarly, the optimum conditions for the reduction in API gravity were obtained at 280 ?°C temperature, 3:7 ?W/O ratio, 0.2 ?wt% of catalyst concentration and a reaction time of 24 ?h.  相似文献   

20.
Three-phase geranyl acetate emulsions stabilized by a non-ionic surfactant, Laureth 4, were prepared with a constant weight fraction of a lamellar liquid crystal and varied aqueous to oil phase weight ratios according to the phase diagram. The appearance and micrographs of the drop pattern versus time were recorded. As expected, emulsions with the lower values of the water to oil (W/O) ratio appeared to be of the W/O variety while the two more stable emulsions with the highest W/O ratio appeared as oil to water (O/W). Considering the surfactant exclusive solubility in the oil, this result was unexpected and the emulsions were investigated as to their structure. Unpredictably, all the emulsions were of the O/W kind; including the highest ratio of oil to water. The reason for this unanticipated outcome was the lamellar liquid crystal being dispersed into the aqueous phase at the slightest perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号