首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Dynamics of anisotropy relaxation of C70 singlet excited molecules in chlorobenzene was measured at room temperature by the picosecond transient grating technique. The time-ependent diffraction efficiency exhibits a two-stage decay: a fast component (1 = 12±5 ps), which is comparable with the corresponding signal of C60 in chlorobenzene ( = 8±2 ps), and a slow one (2 = 30±5 ps). It is supposed that relaxation of anisotropy is related to the orientational mobility of excited C70 molecules relative to two axes of the molecular framework. The results obtained cannot be described by the Einstein-Stokes-Debye theory. The Hynes-Kapral-Weinberg theory, which takes into account microscopic interactions between molecules upon collisions, agrees satisfactorily with the experiment. The influence of dielectric friction on the orientational mobility of C70 in chlorobenzene was estimated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 601–604, March, 1996.  相似文献   

2.
A cationic gemini surfactant, dodecanediyl-1,12-bis(dodecyldiethylammonium bromide) (C12C12C12(Et)), in aqueous solutions with varying NaBr concentration was studied by dynamic light scattering (DLS). As a comparison, its single-chained counterpart, dodecyl triethylammonium bromide (DTEAB), was also investigated under the same conditions. Similar to the case of a polyelectrolyte, C12C12C12(Et) underwent a typical "ordinary-to-extraordinary (o-e) transition" with decreasing salt concentration to zero. At higher salt concentration, a single relaxation mode, corresponding to the diffusion of regular micelles, was observed. While in the "extraordinary regime", DLS detected two characteristic relaxation modes with the values of the diffusion coefficient being different by at least 2 orders. The fast mode was consistent with the polyion-small ion coupled-mode theories, as well as the direct polyion-polyion repulsion interactions. Because the slow mode disappeared at elevated salt concentrations and generated negligible scattered intensity, we attributed it to multimacroion domains.  相似文献   

3.
Dielectric relaxation was examined for aqueous trimethylamineoxide (TMAO) solutions over a wide concentration (c) range. The dielectric relaxation of TMAO was described by a Debye-type function with a relaxation time of about 3 × 10–11 s, with the strength proportional to c. The number of water molecules tightly hydrated to unprotonated TMAO was estimated to be two. Ab initio calculations predict the magnitudes of the dipoles for individual TMAO and TMAO tightly hydrated by two water molecules, to be 4.9 and 4.2 D, respectively. When the amount of HBr added was increased, dielectric spectra were described by two modes with relaxation times, about 3 × 10–11 and the about 8 × 10–10. The fast relaxation was assigned to the rotational mode of unprotonated TMAO tightly hydrated by two water molecules, and the slow mode to the rotational mode of dimers formed between a protonated and unprotonated TMAO due to hydrogen bonding.  相似文献   

4.
The cyano-bridged trinuclear compound, (NEt(4))[Mn(2)(salmen)(2)(MeOH)(2)Fe(CN)(6)] (1) (salmen(2)(-) = rac-N,N'-(1-methylethylene)bis(salicylideneiminate)), reported previously by Miyasaka et al. (ref 19d) has been reinvestigated using combined ac and dc susceptibility measurements. The strong frequency dependence of the ac susceptibility and the slow relaxation of the magnetization show that 1 behaves as a single-molecule magnet with an S(T) = (9)/(2) spin ground state. Its relaxation time (tau) follows an Arrhenius law with tau(0) = 2.5 x 10(-)(7) s and Delta(eff)/k(B) = 14 K. Moreover, below 0.3 K, tau saturates around 470 s, indicating that quantum tunneling of the magnetization becomes the dominant process of relaxation. (NEt(4))[Mn(2) (5-MeOsalen)(2)Fe(CN)(6)] (2) (5-MeOsalen(2)(-) = N,N'-ethylenebis(5-methoxysalicylideneiminate)) is a heterometallic one-dimensional assembly made of the trinuclear [Mn(III)(SB)-NC-Fe(III)-CN-Mn(III)(SB)] (SB is a salen-type Schiff-base ligand) motif similar to 1. Compound 2 has two types of bridges, a cyano bridge (-NC-) and a biphenolate bridge (-(O)(2)-), connecting Mn(III) and Fe(III) ions and the two Mn(III) ions, respectively. Both bridges mediate ferromagnetic interactions, as shown by modeling the magnetic susceptibility above 10 K with g(av) = 2.03, J(Mn)(-)(Fe)/k(B) = +6.5 K, and J'/k(B) = +0.07 K, where J' is the exchange coupling between the trimer units. The dc magnetic measurements of a single crystal using micro-SQUID and Hall-probe magnetometers revealed a uniaxial anisotropy (D(T)/k(B) = -0.94 K) with an easy axis lying along the chain direction. Frequency dependence of the ac susceptibility and time dependence of the dc magnetization have been performed to study the slow relaxation of the magnetization. A mean relaxation time has been found, and its temperature dependence has been studied. Above 1.4 K, both magnetic susceptibility and relaxation time are in agreement with the dynamics described in the 1960s by R. J. Glauber for one-dimensional systems with ferromagnetically coupled Ising spins (tau(0) = 3.7 x 10(-)(10) s and Delta(1)/k(B) = 31 K). As expected, at lower temperatures below 1.4 K, the relaxation process is dominated by the finite-size chain effects (tau'(0) = 3 x 10(-)(8) s and Delta(2)/k(B) = 25 K). The detailed analysis of this single-chain magnet behavior and its two regimes is consistent with magnetic parameters independently estimated (J'and D(T)) and allows the determination of the average chain length of 60 nm (or 44 trimer units). This work illustrates nicely a new strategy to design single-chain magnets by coupling ferromagnetically single-molecule magnets in one dimension.  相似文献   

5.
We present experimental studies of the relaxation of concentration fluctuations in a semidilute solution of polystyrene (PS) (30% by weight) in 4-cyano-4'-n-octyl-biphenyl (8CB) (70% by weight) using the photon correlation spectroscopy (PCS). In the homogeneous phase there are two modes of relaxation. The slow one (typical time scale is taus = 0.001 s) is due to the diffusion of polymer chains (of molecular mass 65,000) in the LC matrix (of molecular mass 290), while the fast one has the time scale of the order of tauf approximately 0.00001 s. The amplitude of the fast mode is much weaker than the one for the slow mode. Moreover it does not depend on the scattering wave vector, q. The value of the diffusion coefficient, Dc = 1/(tausq2) for the slow mode decreases with temperature according to the Arhenius law until we reach the coexistence curve. Its value close to the coexistence is Dc = 4 x 10(5) nm2/s and the activation energy in the homogeneous mixture is Ec=127 kJ/mol. If we gradually undercool the mixture below the coexistence into the metastable two-phase region without inducing the phase separation we find unexpectedly that Dc does not change with temperature even 4 degrees below the coexistence curve. The characteristic time of the fast mode does not depend on the scattering wave vector indicating that it is related to the transient gel structure. We have shown that it is possible to measure the short time relaxation of concentration fluctuations during the phase separation in the mixture. At low temperature close to the isotropic-nematic phase transition we have observed that the relaxation is well separated in time from the typical time of the domain growth. This relaxation mode is characterized by the large diffusion coefficient D = 2 x 10(8) nm2/s. The mode probably comes from the coupling between the orientational dynamics of liquid crystals and the transient gel structure of polymers.  相似文献   

6.
The relationship between the molecular structure and thermal properties in the homologous series nCB with n = 5–10 is investigated by the Monte Carlo and atom — atomic potential methods by dividing the thermodynamic properties of liquid crystal systems into inter- and intramolecular increments. An explicit even-odd correlation between the intermolecular term of the inner configuration energy Uinter, heat capacity C v inter , and the anisotropy of the geometrical form (Σ/Σ) of nCB molecules is established. It is shown that internal degrees of freedom are responsible to a certain extent for the even-odd effect of some physicochemical properties of nCB. The major contribution to the heat capacity Cy is made by the vibrational motion.  相似文献   

7.
The coupling model was applied to describe the alpha-relaxation dynamics of each component in perfectly miscible mixtures A(1-x)B(x) of two different glass-formers A and B. An important element of the model is the change of the coupling parameter of each component with the composition, x, of the mixture. However, this change cannot be determined directly from the frequency dispersion of the alpha-relaxation of each component because of the broadening caused by concentration fluctuations in the mixture, except in the limits of low concentrations of either component, x --> 0 and x --> 1. Fortunately, the coupling model has another prediction. The coupling parameter of a component, say A, in the mixture determines tau(alpha)/tau(JG), the ratio of the alpha-relaxation time, tau(alpha), to the Johari-Goldstein (JG) secondary relaxation time, tau(JG), of the same component A. This prediction enables us to obtain the coupling parameter, n(A), of component A from the isothermal frequency spectrum of the mixture that shows both the alpha-relaxation and the JG beta-relaxation of component A. We put this extra prediction into practice by calculating n(A) of 2-picoline in binary mixtures with either tri-styrene or o-terphenyl from recently published broadband dielectric relaxation data of the alpha-relaxation and the JG beta-relaxation of 2-picoline. The results of n(A) obtained from the experimental data show its change with composition, x, follows the same pattern as assumed in previous works that address only the alpha-relaxation dynamics of a component in binary mixtures based on the coupling model. There is an alternative view of the thrust of the present work. If the change of n(A) with composition, x, in considering the alpha-relaxation of component A is justified by other means, the theoretical part of the present work gives a prediction of how the ratio tau(alpha)/tau(JG) of component A changes with composition, x. The data of tau(alpha) and tau(JG) of 2-picoline mixed with tri-styrene or o-terphenyl provide experimental support for the prediction.  相似文献   

8.
Nanosecond time-resolved absorption studies in a magnetic field ranging from 0 to 2.0 T have been performed on a series of covalently linked donor(PXZ)-Ru(bipyridine)3-acceptor(diquat) complexes (D-C2+-A2+). In the PXZ moiety, the heteroatom (X = O (oxygen), T (sulfur), and S (selenium)) is systematically varied to study spin-orbit coupling effects. On the nanosecond time scale, the first detectable photoinduced electron-transfer product after exciting the chromophore C2+ is the charge-separated (CS) state, D+-C2+-A+, where an electron of the PXZ moiety, D, has been transferred to the diquat moiety, A2+. The magnetic-field-dependent kinetic behavior of charge recombination (monoexponential at 0 T progressing to biexponential for all three complexes with increasing field) can be quantitatively modeled by the radical pair relaxation mechanism assuming creation of the CS state with pure triplet spin correlation (3CS). Magnetic-field-independent contributions to the rate constant kr of T+/- --> (T0,S) relaxation are about 4.5 x 10(5) s-1 for DCA-POZ and -PTZ (due to a vibrational mechanism) and 3.5 x 10(6) s-1 for DCA-PSZ (due to spin rotational mechanism). Recombination to the singlet ground state is allowed only from the 1CS spin level; spin-forbidden recombination from 3CS seems negligible even for DCA-PSZ. The field dependence of kr (field-dependent recombination) can be decomposed into the contributions of various relaxation mechanisms. For all compounds, the electron spin dipolar coupling relaxation mechanism dominates the field dependence of tau(slow) at fields up to about 100 mT. Spin relaxation due to the g-tensor anisotropy relaxation mechanism accounts for the field dependence of tau(slow) for DCA-PSZ at high fields. For the underlying stochastic process, a very short correlation time of 2 ps has to be assumed, which is tentatively assigned to a flapping motion of the central, nonplanar ring in PSZ. Finally, it has been confirmed by paramagnetic quenching (here Heisenberg exchange) experiments of the magnetic-field effects with TEMPO that all magnetic-field dependencies observed with the present DCA-PSZ systems are indeed due to the magnetic-field dependence of spin relaxation.  相似文献   

9.
An alternated 1:1 chain compound of a Mn(III) salen derivative and the TCNQ monoradical was synthesized: [Mn(5-TMAMsaltmen)(TCNQ)](ClO(4))(2) (1) (TCNQ=tetracyano-p-quinodimethane; 5-TMAMsaltmen=N,N'-(1,1,2,2-tetramethylethylene) bis(5-trimethylammoniomethylsalicylideneiminato)). Compound 1 has a zigzag chain structure packed with adjacent chains with an interchain MnMn distance of over 8 Angatrom. As compound 1 contains no crystallization solvent, the void spaces between chains are occupied only by ClO(4) (-) counter ions. Compound 1 has a structure reminiscent of what has been observed in the family of Mn(III)(porphyrin)-TCNE or -TCNQ compounds reported previously by Miller and co-workers and we demonstrate herein its unique single-chain magnet behavior among this family of compounds. The direct current (dc) magnetic measurements established the one-dimensional nature of compound 1 with an antiferromagnetic exchange coupling, J/k(B) approximately -96 K, between the Mn(III) ion and TCNQ radical and with an activated correlation length (Delta(xi)=26.5 K) at low temperatures (50-15 K). The slow relaxation of the magnetization was shown in compound 1 by the field hysteresis of the magnetization observed below 3.5 K (with a coercive field up to 14 kOe at 1.8 K). Single-crystal magnetization measurements demonstrated the uniaxial symmetry of this compound and allowed an estimation of the anisotropy field, H(a) approximately 97 kOe. The absence of magnetic ordered phase or spin-glass behavior was established by heat-capacity calorimetry measurements that exhibit no abnormality of C(p) between 0.5 K and 10 K. The study of the magnetization relaxation by combined ac (alternating current) and dc techniques showed that compound 1 possesses a single relaxation time (tau). As the consequence of the finite size of the chain, the temperature dependence of tau presents two activated regimes above and below 4.5 K with tau(01)=2.1 x 10(-10) s, Delta(tau1)=94.1 K and tau(02)=6.8 x 10(-8) s and Delta(tau2)=67.7 K, respectively. The detailed analysis of these dynamics properties together with the correlation length, allows an unambiguous demonstration of the single-chain magnet behavior in 1.  相似文献   

10.
The recombination dynamics of NO with dehaloperoxidase (DHP) from Amphitrite ornata following photolysis were measured by femtosecond time-resolved absorption spectroscopy. Singular value decomposition (SVD) analysis reveals two important basis spectra. The first SVD basis spectrum reports on the population of photolyzed NO molecules and has the appearance of the equilibrium difference spectrum between the deoxy and NO forms of DHP. The first basis time course has two kinetic components with time constants of tau(11) approximately 9 ps and tau(12) approximately 50 ps that correspond to geminate recombination. The fast geminate process tau(11) arises from a contact pair with the heme iron in a bound state with S = 3/2 spin. The slow geminate process tau(12) corresponds to the recombination from a more remote docking site >3 A from the heme iron with the greater barrier corresponding to a S = 5/2 spin state. The second SVD basis spectrum represents a time-dependent Soret band shift indicative of heme photophysical processes and protein relaxation with time constants of tau(21) approximately 3 ps and tau(22) approximately 17 ps, respectively. A comparison between the more rapid rate constant of the slow geminate phase in DHP-NO and horse heart myoglobin (HHMbNO) or sperm whale myoglobin (SWMbNO) suggests that protein interactions with photolyzed NO are weaker in DHP than in the wild-type MbNOs, consistent with the hydrophobic distal pocket of DHP. The slower protein relaxation rate tau(22) in DHP-NO relative to HHMbNO implies less effective trapping in the docking site of the distal pocket and is consistent with a greater yield for the fast geminate process. The trends observed for DHP-NO also hold for the H64V mutant of SWMb (H64V MbNO), consistent with a more hydrophobic distal pocket for that protein as well. We examine the influence of solution viscosity on NO recombination by varying the glycerol content in the range from 0% to 90% (v/v). The dominant effect of increasing viscosity is the increase of the rate of the slow geminate process, tau(12), coupled with a population decrease of the slow geminate component. Both phenomena are similar to the effect of viscosity on wild-type Mb due to slowing of protein relaxation resulting from an increased solution viscosity and protein surface dehydration.  相似文献   

11.
 The reentrant behavior of Poly(vinyl alcohol) (PVA)–borax aqueous semidilute solutions with a PVA concentration of 20 g/l and borax concentrations varies from 0.0 to 0.20 M was investigated using dynamic light scattering (DLS) and dynamic viscoelastic measurements. Two (fast and slow modes) and three (fast, middle, and slow) relaxation modes of PVA semidilute aqueous solutions without and with the presence of borax, respectively, were observed from DLS measurements. The fast and middle relaxation modes were q 2-dependent (q is the scattering vector) characteristic of diffusive behavior; however, the slow modes were q 3-dependent, characteristic of intraparticle dynamics. The experimental results showed that the slow relaxation mode dominates the DLS relaxation. The DLS slow mode relaxation time, τs, and the viscoelastic modulus G′(ω) and G′′(ω) data had a similar trend and demonstrated reentrant behavior as the borax concentration was increased from 0.0 to 0.20 M, i.e. τs, G′(ω), and G′′(ω) fluctuated with increasing borax concentration. The excluded-volume effect of polymers, charge repulsion among borate ions bound on PVA molecules, and intermolecular cross-linking didiol–borate complexation caused an expansion of the polymer chain; however, the screening effect of free Na+ ions on the negative charge of the borate ions bound on PVA and intramolecular cross-linking didiol–borate complexation led to a shrinkage of the polymer chain. The reentrant behavior was the consequence of the balance between expansion and shrinkage of the PVA–borate complex. Received: 26 March 1999/Accepted in revised form: 3 September 1999  相似文献   

12.
利用太赫兹透射光谱测量了液态乙醇和液态水以及不同浓度乙醇水溶液在22℃的介电常数.并利用Levenberg-Marquardt算法拟合得到了它们的Debye模型,该模型包含3个弛豫过程和1个分子间伸缩振动模式.其中,慢速弛豫模式的强度(弛豫时间20~160ps)贡献了主要的介电强度,中间弛豫模式与其密切相关.而快速弛豫模式(弛豫时间约为1ps)只占了大约5%的介电常数.  相似文献   

13.
Dielectric behavior was examined for aqueous solutions of the betaine-type surfactants dodecyldimethylcarbobetaine (C(12)DCB), tetradecyldimethylcarbobetaine (C(14)DCB), cetyldimethylcarbobetaine (C(16)DCB), and oleyldimethylcarbobetaine (OleyDCB) as a function of frequency from 1.00 x 10(6) to 2.00 x 10(10) Hz (6.28 x 10(6) to 1.26 x 10(11) rad s(-1)) with changing surfactant concentration (c(D)). Rotational relaxation times (tau) of the zwitterionic headgroups of the surfactants in aqueous solutions of C(12)DCB and C(14)DCB, which form spherical micelles, are determined to be 0.26 and 0.30 ns, respectively. Values of tau for aqueous solutions of C(16)DCB and OleyDCB, which form threadlike micelles, are identical at 0.44 ns. The tau values of all micellar solutions are constant irrespective of c(D). The increase in tau with increasing alkyl chain length is assigned to an increase of molecular density at the micellar surface. The magnitude of the relaxation strength for the surfactant solutions increases in proportion to c(D) and is not so different from that of an aqueous solution of glycine betaine (GB), which has the same chemical structure as betaine-type surfactants with zwitterionic headgroups but never forms micelles. This finding suggests that the zwitterionic headgroup rotating on the micellar surface possesses a dipole moment with a magnitude essentially the same as that of GB in aqueous solutions.  相似文献   

14.
The electrocrystallization of diiodo- and dibromo-ethylenedithiotetrathiafuvalene (EDT-TTFI2 and EDT-TTFBr2) in the presence of the polymeric 1D [Et4N][Cd(SCN)3] as an electrolyte affords two different salts, formulated as [EDT-TTF-I2]4[Cd3(NCS)8] x CH3CN x H2O (1) and [EDT-TTF-Br2]10[Cd5(SCN)14] x 2 TCE (2), characterized by a two-dimensional segregation of the partially oxidized donor molecules and the polymeric anionic network incorporating embedded solvent molecules. Both salts exhibit a partial charge transfer, that is, rho = 0.5 in 1 and an unconventional rho = 0.4 in 2. They behave as semiconductors with sigma RT = 0.67 and 33 S cm(-1) and activation energies of 330 and 370 K for 1 and 2, respectively. Compared with a 1:3 Cd/SCN ratio of the starting electrolyte, the reconstructed, thiocyanate (SCN)-deficient motifs [Cd3(NCS)8](2-) and [Cd5(SCN)14](4-) organize into layered hollow structures with cavities filled by solvent molecules, halogen-bonded to the halogenated TTF molecules, through a C(TTF)-I...N[triple bond]C-CH3 interaction in 1, through a type II C(TTF)-Br...Cl-C(TCE) halogen/halogen interaction in 2. Band structure and Fermi surface calculations for the two salts indicate a two-dimensional character, while the semiconducting properties of the salts are attributed to an efficient nesting of the hidden 1D Fermi surfaces.  相似文献   

15.
报道了水溶性铑膦配合物组成的复合催化体系催化1-十二烯氢甲酰化反应中,双子表面活性剂[二溴化-(N,N,N′,N′-四甲基)-N,N′-二(十六烷基)-乙二铵]形成胶束的助催化作用.结果表明,在水/有机两相中,双子表面活性剂比单链表面活性剂CTAB具有更好加速催化反应的作用,并使烯烃氢甲酰化的区域选择性显著提高.这归因于双子表面活性剂有较低的cmc,可形成更加紧密规整的胶束结构,有利于增溶在胶束中的烯烃与铑催化剂配位和生成正构醛.  相似文献   

16.
The hole-induced photodesorption of chemisorbed O2 from a TiO2(110) single crystal has been employed to monitor the kinetics of electron-hole pair (e-h) formation and hole trapping. Excitation is produced by 3.4 +/- 0.05 eV photons at 110 K. Two separate O2 desorption processes have been found which are characteristic of low photon fluxes and high photon fluxes. At a critical photon flux, Fhnu(crit), the slow O2 photodesorption process suddenly converts to a fast process, signaling the saturation of hole traps in the TiO2 crystal. Consequently, this allows photogenerated holes to more efficiently reach the surface, causing more rapid O2 photodesorption. The estimated bulk concentration of hole traps is approximately 2.5 x 10(18) cm(-3), involving a fraction of about 3 x 10(-5) of the atomic sites in the bulk. Both the slow and fast O2 photodesorption processes are described by a rate law that is proportional to Fhnu(1/2), indicating that the steady-state concentration of holes, [h], is governed by second-order e-h pair recombination kinetics. Effective use is made of a hole scavenger molecule, adsorbed methanol (CH3OH), to probe the role of added hole traps on the rate of the photodesorption of adsorbed O2 molecules and on the magnitude of Fhnu(crit).  相似文献   

17.
Importance of micellar kinetics in relation to technological processes   总被引:5,自引:0,他引:5  
The association of many classes of surface-active molecules into micellar aggregates is a well-known phenomenon. Micelles are in dynamic equilibrium, constantly disintegrating and reforming. This relaxation process is characterized by the slow micellar relaxation time constant, tau(2), which is directly related to the micellar stability. Theories of the kinetics of micelle formation and disintegration have been discussed to identify the gaps in our complete understanding of this kinetic process. The micellar stability of sodium dodecyl sulfate micelles has been shown to significantly influence technological processes involving a rapid increase in interfacial area, such as foaming, wetting, emulsification, solubilization, and detergency. First, the available monomers adsorb onto the freshly created interface. Then, additional monomers must be provided by the breakup of micelles. Especially when the free monomer concentration is low, which is the case for many nonionic surfactant solutions, the micellar breakup time is a rate-limiting step in the supply of monomers. The Center for Surface Science & Engineering at the University of Florida has developed methods using stopped flow and pressure jump with optical detection to determine the slow relaxation time of micelles of nonionic surfactants. The results showed that the ionic surfactants such as SDS exhibit slow relaxation times in the range from milliseconds to seconds, whereas nonionic surfactants exhibit slow relaxation times in the range from seconds (for Triton X-100) to minutes (for polyoxyethylene alkyl ethers). The slow relaxation times are much longer for nonionic surfactants than for ionic surfactants, because of the absence of ionic repulsion between the head groups. The observed relaxation times showed a direct correlation with dynamic surface tension and foaming experiments. In conclusion, relaxation time data of surfactant solutions correlate with the dynamic properties of the micellar solutions. Moreover, the results suggest that appropriate micelles with specific stability or tau(2) can be designed by controlling the surfactant structure, concentration, and physicochemical conditions (e.g., salt concentration, temperature, and pressure). One can also tailor micelles by mixing anionic/cationic or ionic/nonionic surfactants for a desired stability to control various technological processes.  相似文献   

18.
We investigate the relaxation phenomena in a polymer (polystyrene)/liquid crystal (4-cyano-4'-n-octyl-biphenyl) system, in its homogeneous isotropic phase near the isotropic-isotropic, isotropic-nematic, and isotropic-smectic coexistence curve, using both polarized and depolarized photon correlation spectroscopy (PCS). We study this system for different polystyrene molecular weights (4750, 12 500, and 65 000 g/mol), different compositions (50, 40, 30, and 10% polystyrene (PS) by weight), and different temperatures close to phase boundaries. First of all, we determine the phase diagrams of this system for the different molecular weights. The shape of the phase diagrams strongly depends on the molecular weight. However, in all cases, at low temperatures, these systems separate into an almost pure liquid crystalline (LC) phase and polystyrene-rich phase. PCS measurements show that the relaxation processes in the homogeneous phase are not affected by the proximity of the nematic, or smectic, boundaries (even at a temperature of 0.1 degrees C above the phase separation in two phases). In polarized PCS experiments, we always see three relaxation processes well separated in time: one, very fast, with a relaxation time of the order of 10(-5) s; a second one with a relaxation time within the range 10(-2)-10(-3) s; and a last one, very slow, with a relaxation time of the order of 1 s. Both the fast and slow modes are independent of the wave vector magnitude, while the intermediate relaxation process is diffusive. In depolarized PCS experiments, the intermediate mode disappears and only the fast and slow relaxation processes remain, and they are independent of the magnitude of the wave vector. The diffusive mode is the classical diffusive mode, which is associated with the diffusion of polymer chains in all polymer solutions. The fast mode is due to the rotational diffusion of 4-cyano-4'-n-octyl-biphenyl (8CB) molecules close to polystyrene chains (transient network). Finally, we assign the slowest mode to reorientational processes of small aggregates of PS chains that are not dissolved in 8CB.  相似文献   

19.
Two metallosynthons, namely (Et4N)2[Ni(NpPepS)] (1) and (Et4N)2[Ni(PhPepS)] (2) containing carboxamido-N and thiolato-S as donors have been used to model the bimetallic M(p)-Ni(d) subsite of the A-cluster of the enzyme acetyl coenzyme A synthase/CO dehydrogenase. A series of sulfur-bridged Ni/Cu dinuclear and trinuclear complexes (3-10) have been synthesized to explore their redox properties and affinity of the metal centers toward CO. The structures of (Et4N)2[Ni(PhPepS)] (2), (Et4N)[Cu(neo)Ni(NpPepS)] x 0.5 Et2O x 0.5 H2O (3 x 0.5 Et2O x 0.5 H2O), (Et4N)[Cu(neo)Ni(PhPepS)] x H2O (4 x H2O), (Et4N)2[Ni{Ni(NpPepS)}2] x DMF (5 x DMF), (Et4N)2[Ni(DMF)2{Ni(NpPepS)}2] x 3 DMF (6 x 3 DMF), (Et4N)2[Ni(DMF)2{Ni(PhPepS)}2] (8), and [Ni(dppe)Ni(PhPepS)] x CH2Cl2 (10 x CH2Cl2) have been determined by crystallography. The Ni(d) mimics 1 and 2 resist reduction and exhibit no affinity toward CO. In contrast, the sulfur-bridged Ni center (designated Ni(C)) in the trinuclear models 5-8 are amenable to reduction and binds CO in the Ni(I) state. Also, the sulfur-bridged Ni(C) center can be removed from the trimers (5-8) by treatment with 1,10-phenanthroline much like the "labile Ni" from the enzyme. The dinuclear Ni-Ni models 9 and 10 resemble the Ni(p)-Ni(d) subsite of the A-cluster more closely, and only the modeled Ni(p) site of the dimers can be reduced. The Ni(I)-Ni(II) species display EPR spectra typical of a Ni(I) center in distorted trigonal bipyramidal and distorted tetrahedral geometries for 9(red) and 10(red), respectively. Both species bind CO, and the CO-adducts 9(red)-CO and 10(red)-CO display strong nu(co) at 2044 and 1997 cm(-1), respectively. The reduction of 10 is reversible. The CO-affinity of 10 in the reduced state and the nu(co) value of 10(red)-CO closely resemble the CO-bound reduced A-cluster (nu(co) = 1996 cm(-1)).  相似文献   

20.
Quasielastic neutron scattering has been used to study proton dynamics in the system lithium-ammonia at concentrations of 0, 4, 12, and 20 mole percent metal (MPM) in both the liquid and solid (expanded metal) phases. At 230 K, in the homogenous liquid state, we find that the proton self-diffusion coefficient first increases with metal concentration, from 5.6x10(-5) cm2 s(-1) in pure ammonia to 7.8x10(-5) cm2 s(-1) at 12 MPM. At higher concentrations we note a small decrease to a value of 7.0x10(-5) cm2 s(-1) at 20 MPM (saturation). These results are consistent with NMR data, and can be explained in terms of the competing influences of the electron and ion solvation. At saturation, the solution freezes to form a series of expanded metal compounds of composition Li(NH3)4. Above the melting point, at 100 K, we are able to fit our data to a jump-diffusion model, with a mean jump length (l) of 2.1 A and residence time (tau) of 3.1 ps. This model gives a diffusion coefficient of 2.3x10(-5) cm2 s(-1). In solid phase I (cubic, stable from 88.8 to 82.2 K) we find that the protons are still undergoing this jump diffusion, with l=2.0 A and tau=3.9 ps giving a diffusion coefficient of 1.8x10(-5) cm2 s(-1). Such motion gives way to purely localized rotation in solid phases IIa (from 82.2 to 69 K) and IIb (stable from 69 to 25 K). We find rotational correlation times (tau(rot)) of the order of 2.0 and 7.3 ps in phases IIa and IIb, respectively. These values can be compared with a rotational mode in solid ammonia with tau(rot) approximately 2.4 ps at 150 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号