首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张平  薛其坤  谢心澄 《物理》2004,33(4):238-241
从理论上研究了相互作用量子点在外部旋转磁场下的非平衡自旋输运性质,研究结果表明,量子点中的相干自旋振荡可以导致自旋电流的产生,当计入库仑关联相互作用后,近藤共振效应受外部进动磁场的影响很强,特别是当磁场的进动频率与塞曼能移满足共振条件时,每个自旋近藤峰就会劈裂为两个自旋共振峰的叠加,在低温强耦合区,这种近藤型共隧穿过程对自旋电流带来重要贡献。  相似文献   

2.
Nonequilibrium spin transport through an interacting quantum dot is analyzed. The coherent spin oscillations in the dot provide a generating source for spin current. In the interacting regime, the Kondo effect is influenced in a significant way by the presence of the processing magnetic field. In particular, when the precession frequency is tuned to resonance between spin-up and spin-down states of the dot, Kondo singularity for each spin splits into a superposition of two resonance peaks. The Kondo-type cotunneling contribution is manifested by a large enhancement of the pumped spin current in the strong coupling low temperature regime.  相似文献   

3.
We study the pumped spin current of an interacting quantum dot tunnel coupled to a single lead in the presence of electron spin resonance (ESR) field. The spin decoherence in the dot is included by the Bffttiker approach. Using the nonequilibrium Green's function technique, we show that ESR-induced spin flip can generate finite spin current with no charge transport. Both the Coulomb interaction and spin decoherence decrease the amplitude of spin current. The dependence of pumped spin current on the intensity and frequency of ESR field, and the spin decoherence is discussed.  相似文献   

4.
We exploit the pumped spin-current and current noise spectra under equilibrium conditions in a single quantum dot connected to two normal leads as an electrical scheme for detection of the electron spin resonance (ESR) and decoherence. We propose spin-resolved quantum rate equations with correlation functions in Laplace space for the analytical derivation of the zero-frequency auto- and cross-shot noise spectra of charge and spin current. Our results show that in the strong Coulomb blockade regime, ESR-induced spin flip generates a finite spin current and quantum partition noises in the absence of net charge transport. Moreover, spin shot noise is closely related to the magnetic Rabi frequency and decoherence and would be a sensitive tool to measure them.  相似文献   

5.
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a thresholdlike enhancement or reduction of the local nuclear field by up to 3 T can be generated by varying the pumping intensity. The excitation power threshold for such a nuclear spin "switch" is found to depend on both the external magnetic and electric fields. The switch is shown to arise from the strong feedback of the nuclear spin polarization on the dynamics of the spin transfer from electrons to the nuclei of the dot.  相似文献   

6.
In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot. Depending on the parameters of the quantum dot and its coupling to the reservoirs, we show that it can be found in two different regimes: the magnetic regime and the non-magnetic regime. In the magnetic regime we find a non-vanishing spin current in addition to the charge current present in both cases.  相似文献   

7.
We propose a scheme for coherent rotation of the valley isospin of a single electron confined in a carbon nanotube quantum dot. The scheme exploits the ubiquitous atomic disorder of the nanotube crystal lattice, which induces time-dependent valley mixing as the confined electron is pushed back and forth along the nanotube axis by an applied ac electric field. Using experimentally determined values for the disorder strength we estimate that valley Rabi oscillations with a period on the nanosecond time scale are feasible. The valley resonance effect can be detected in the electric current through a double quantum dot in the single-electron transport regime.  相似文献   

8.
Zhengzhong Zhang 《中国物理 B》2021,30(11):117305-117305
A magnetic field-controlled spin-current diode is theoretically proposed, which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes. By applying a spin bias VS across the junction, a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists. More interestingly, if we applied an external magnetic field on the quantum dot, we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias, while the charge current always decays to zero in the Coulomb blockade regime. Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias, while the net charge through the device is almost zero. Different from the traditional charge current diode, this design can change the polarity direction and rectifying ability by adjusting the external magnetic field, which is very convenient. This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.  相似文献   

9.
Within the weak-coupling regime the spin current through a quantum dot system is calculated using a quantum master equation approach which includes a sum over Matsubara terms. To be able to efficiently calculate, also at low temperatures, the time evolution of the reduced density matrix a high-temperature approximation was derived which proves to be rather accurate in comparison to the exact results. In the present model it is assumed that the energy levels of the dot are split by a constant magnetic field. An additional external (laser) field is used to control the currents of the two spin polarizations. This is either done using the phenomenon of coherent destruction of tunneling or optimal control theory. Scenarios are studied in which the spin current is reversed while the charge current is kept constant.  相似文献   

10.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies.  相似文献   

11.
Linear and nonlinear transport through a quantum dot that is weakly coupled to ideal quantum leads is investigated in the parameter regime where charging and geometrical quantization effects coexist. The exact eigenstates and spins of a finite number of correlated electrons confined within the dot are combined with a rate equation. The current is calculated in the regime of sequential tunneling. The analytic solution for an Anderson impurity is given. The phenomenological charging model is compared with the quantum mechanical model for interacting electrons. The current-voltage characteristics show Coulomb blockade. The excited states lead to additional fine-structure in the current voltage characteristics. Asymmetry in the coupling between the quantum dot and the leads causes asymmetry in the conductance peaks which is reversed with the bias voltage. The spin selection rules can cause a ‘spin blockade’ which decreases the current when certain excited states become involved in the transport. In two-dimensional dots, peaks in the linear conductance can be suppressed at low temperatures, when the total spins of the corresponding ground states differ by more than 1/2. In a magnetic field, an electron number parity effect due to the different spins of the many-electron ground states is predicted in addition to the vanishing of the spin blockade effect. All of the predicted features are consistent with recent experiments.  相似文献   

12.
The thermoelectric transport in the system composed of a quantum dot in contact with superconducting, ferromagnetic and normal metal electrodes has been studied. Such a system can support pure spin current in the normal electrode. In the limit of a large superconducting gap and weak coupling between the dot and the electrodes we investigate the sub-gap charge and spin transport via Andreev mechanism using the standard master equation technique, which is known to be valid in the sequential tunnelling regime. The Zeeman splitting of the dot level induces pure spin current in the ferromagnetic electrode under an appropriate bias. This opens a novel possibility to switch the spin current between two electrodes by electric means. The calculated spin and charge thermopower coefficients attain very large values, of the order of a few hundreds μV K(-1), and show similar dependences on the position of the on-dot energy level and temperature.  相似文献   

13.
We address the precession of an ensemble of electron spins, each confined in a (In, Ga)As/GaAs self-assembled quantum dot. The quantum dot inhomogeneity is directly reflected in the precession of the optically oriented electron spins about an external magnetic field, which is subject to fast dephasing on a nanoseconds time scale. Proper periodic laser excitation allows synchronization of the electron spin precessions with the excitation cycle. The experimental conditions can be tailored such that eventually all (about a million) electron spins that are excited by the laser precess with a single frequency. In this regime the ensemble can be exploited during the single electron spin coherence times being in the microseconds range.  相似文献   

14.
We have measured the relaxation time, T1, of the spin of a single electron confined in a semiconductor quantum dot (a proposed quantum bit). In a magnetic field, applied parallel to the two-dimensional electron gas in which the quantum dot is defined, Zeeman splitting of the orbital states is directly observed by measurements of electron transport through the dot. By applying short voltage pulses, we can populate the excited spin state with one electron and monitor relaxation of the spin. We find a lower bound on T1 of 50 micros at 7.5 T, only limited by our signal-to-noise ratio. A continuous measurement of the charge on the dot has no observable effect on the spin relaxation.  相似文献   

15.
赵华  张国锋  殷雯  梁九卿 《中国物理》2004,13(6):938-941
We have studied the dynamical behaviours of two electrons confined in a double quantum dot driven by rotating magnetic fields in terms of the theory of Lewis-Riesenfeld Hermitian invariants for the explicitly time-dependent Hamiltonian. The coherent spin oscillations in the dot provide a generation source for spin current. Exact solutions obtained allow us to investigate the dynamical properties of the spin localization for various initial localized states.  相似文献   

16.
We report on experiments of the magnetotransport properties of GaAs-AlGaAs lateral quantum dots. At high magnetic fields for a 1 μm square dot structure, current flow occurred via edge states and, with the point contacts adjusted to allow transmission of one or more edge states, a strong backscattering resonance followed by short period oscillations were observed in the magnetoresistance, as B increased. At higher fields for a 2 μm dot, we observe a rapid rise in the magnetoresistance associated with the depopulation of the point contacts and the isolation of the dot from the leads. At still higher fields there occur periodic oscillations whose period was two orders of magnitude larger than would result from interference, or Aharonov-Bohm type effects.We analyze these phenomena using self-consistent electronic structure calculations for our devices. In particular, we show that the evolution of the terrace like structure of the potential profile profoundly affects the single particle spectrum within the dot when several Landau levels are occupied. For the large dot device, we expect that in the high field regime with the dot isolated from the leads, only a single Landau level is occupied in both the dot and the 2DEG region. In this regime, tunneling into and out of the dot is regulated by charging effects. We have introduced a "magneto-Coulomb oscillations" explanation of the periodic resonances that are observed.  相似文献   

17.
We demonstrate single-shot readout of a silicon quantum dot spin qubit, and we measure the spin relaxation time T1. We show that the rate of spin loading can be tuned by an order of magnitude by changing the amplitude of a pulsed-gate voltage, and the fraction of spin-up electrons loaded can also be controlled. This tunability arises because electron spins can be loaded through an orbital excited state. Using a theory that includes excited states of the dot and energy-dependent tunneling, we find that a global fit to the loading rate and spin-up fraction is in good agreement with the data.  相似文献   

18.
We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference.  相似文献   

19.
We consider Coulomb blockade oscillations of thermoelectric coefficients of a single electron transistor based on a quantum dot strongly coupled to one of the leads. An analytic expression for the thermopower as a function of temperature T and the reflection amplitude r in the quantum point contact is obtained. Two regimes can be identified: TEC/r/2, where EC is the charging energy of the dot. The former regime is characterized by a weak logarithmic dependence of the thermopower on the reflection coefficient, in the latter the thermopower is linear in the reflection coefficient /r/2 but depends on temperature only logarithmically.  相似文献   

20.
We investigate the Kondo effect and spin blockade observed in a many-electron quantum dot and study the magnetic field dependence. At lower fields, a pronounced Kondo effect is found, which is replaced by the spin blockade at higher fields. In an intermediate regime, both effects are visible. We make use of this combined effect to gain information about the internal spin configuration of our quantum dot. We find that the data cannot be explained assuming regular filling of electronic orbitals. Instead, spin polarized filling seems to be probable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号